* revised, ready for review
authorjcheney@inf.ed.ac.uk
Fri, 05 Apr 2013 17:21:40 +0100
changeset 6057 299a092f4bd0
parent 6056 fe75ff29dc80
child 6058 ff8007656fc6
* revised, ready for review
semantics/prov-sem.html
semantics/releases/NOTE-prov-sem-20130430/Overview.html
--- a/semantics/prov-sem.html	Fri Apr 05 17:00:28 2013 +0100
+++ b/semantics/prov-sem.html	Fri Apr 05 17:21:40 2013 +0100
@@ -1007,24 +1007,24 @@
 This document is part of the PROV family of documents, a set of documents defining various aspects that are necessary to achieve the vision of inter-operable
 interchange of provenance information in heterogeneous environments such as the Web.  These documents are listed below. Please consult the [[PROV-OVERVIEW]] for a guide to reading these documents. 
 <ul>
-<li> <a href="http://www.w3.org/TR/2013/WD-prov-overview-20130312/">PROV-OVERVIEW</a> (To be published as Note), an overview of the PROV family of documents [[PROV-OVERVIEW]];</li>
-<li> <a href="http://www.w3.org/TR/2013/WD-prov-primer-20130312/">PROV-PRIMER</a> (To be published as Note), a primer for the PROV data model [[PROV-PRIMER]];</li>
-<li> <a href="http://www.w3.org/TR/2013/PR-prov-o-20130312/">PROV-O</a> (Proposed Recommendation), the PROV ontology, an OWL2 ontology allowing the mapping of PROV to RDF [[PROV-O]];</li>
-<li> <a href="http://www.w3.org/TR/2013/PR-prov-dm-20130312/">PROV-DM</a> (Proposed Recommendation), the PROV data model for provenance [[PROV-DM]];</li>
-<li> <a href="http://www.w3.org/TR/2013/PR-prov-n-20130312/">PROV-N</a> (Proposed Recommendation), a notation for provenance aimed at human consumption [[PROV-N]];</li>
+<li> <a href="http://www.w3.org/TR/2013/NOTE-prov-overview-20130430/">PROV-OVERVIEW</a> (Note), an overview of the PROV family of documents [[PROV-OVERVIEW]];</li>
+<li> <a href="http://www.w3.org/TR/2013/NOTE-prov-primer-20130430/">PROV-PRIMER</a> (Note), a primer for the PROV data model [[PROV-PRIMER]];</li>
+<li> <a href="http://www.w3.org/TR/2013/REC-prov-o-20130430/">PROV-O</a> (Recommendation), the PROV ontology, an OWL2 ontology allowing the mapping of PROV to RDF [[PROV-O]];</li>
+<li> <a href="http://www.w3.org/TR/2013/REC-prov-dm-20130430/">PROV-DM</a> (Recommendation), the PROV data model for provenance [[PROV-DM]];</li>
+<li> <a href="http://www.w3.org/TR/2013/REC-prov-n-20130430/">PROV-N</a> (Recommendation), a notation for provenance aimed at human consumption [[PROV-N]];</li>
 <li> <a
-href="http://www.w3.org/TR/2013/PR-prov-constraints-20130312/">PROV-CONSTRAINTS</a>
-(Proposed Recommendation), a set of constraints applying to the PROV
+href="http://www.w3.org/TR/2013/REC-prov-constraints-20130430/">PROV-CONSTRAINTS</a>
+(Recommendation), a set of constraints applying to the PROV
 data model [[PROV-CONSTRAINTS]];</li>
-<li> <a href="http://www.w3.org/TR/2013/WD-prov-xml-20130312/">PROV-XML</a> (To be published as Note),  an XML schema for the PROV data model [[PROV-XML]];</li>
-<li> <a href="http://www.w3.org/TR/2013/WD-prov-aq-20130312/">PROV-AQ</a> (To be published as Note), the mechanisms for accessing and querying provenance [[PROV-AQ]]; </li>
-<li> <a href="http://www.w3.org/TR/2013/WD-prov-dictionary-20130312/">PROV-DICTIONARY</a> (To be published as Note) introduces a specific type of collection, consisting of key-entity pairs [[PROV-DICTIONARY]];</li>
-<li> <a href="http://www.w3.org/TR/2013/WD-prov-dc-20130312/">PROV-DC</a> (To be published as Note) provides a mapping between PROV and Dublic Core Terms [[PROV-DC]];</li>
+<li> <a href="http://www.w3.org/TR/2013/NOTE-prov-xml-20130430/">PROV-XML</a> (Note),  an XML schema for the PROV data model [[PROV-XML]];</li>
+<li> <a href="http://www.w3.org/TR/2013/NOTE-prov-aq-20130430/">PROV-AQ</a> (Note), the mechanisms for accessing and querying provenance [[PROV-AQ]]; </li>
+<li> <a href="http://www.w3.org/TR/2013/NOTE-prov-dictionary-20130430/">PROV-DICTIONARY</a> (Note) introduces a specific type of collection, consisting of key-entity pairs [[PROV-DICTIONARY]];</li>
+<li> <a href="http://www.w3.org/TR/2013/NOTE-prov-dc-20130430/">PROV-DC</a> (Note) provides a mapping between PROV and Dublic Core Terms [[PROV-DC]];</li>
 <li> <a
-href="http://www.w3.org/TR/2013/WD-prov-sem-20130312/">PROV-SEM</a>
-(To be published as Note), a declarative specification in terms of
+href="http://www.w3.org/TR/2013/NOTE-prov-sem-20130430/">PROV-SEM</a>
+(Note), a declarative specification in terms of
 first-order logic of the PROV data model (this document);</li>
-<li> <a href="http://www.w3.org/TR/2013/WD-prov-links-20130312/">PROV-LINKS</a> (To be published as Note) introduces a mechanism to link across bundles [[PROV-LINKS]].</li>
+<li> <a href="http://www.w3.org/TR/2013/NOTE-prov-links-20130430/">PROV-LINKS</a> (Note) introduces a mechanism to link across bundles [[PROV-LINKS]].</li>
 </ul>
 
 </section>
@@ -1157,7 +1157,7 @@
 [[PROV-N]] notation.  In particular it assumes familiarity with the concepts
   from logic, and the relationship between PROV statements and
   instances and first-order formulas and theories, respectively,
-  presented in <a href="http://www.w3.org/TR/2013/PR-prov-constraints-20130312/#overview">Section 2.5</a> of PROV-CONSTRAINTS.
+  presented in <a href="http://www.w3.org/TR/2013/REC-prov-constraints-20130430/#overview">Section 2.5</a> of PROV-CONSTRAINTS.
 </p>
 
   <p>This document may be useful to users of PROV who have a formal
@@ -1397,42 +1397,48 @@
 structure $W$ are given in the rest of the section in
 <em>components</em>, highlighted in boxes.
 
-<div class="note"><p>TODO: Introduce Events</p></div>
-<section>
+
 
 <h3> Things </h3> 
 
-<p><em>Things</em>  is a set of things in the situation being modeled.  Each thing has a lifetime during which it exists and attributes whose values can change over time.
+<p><em>Things</em>  is a set of things in the situation being modeled.
+Each thing has an associates set of $Events$ and attributes whose
+values can change over time.  Different kinds of $Events$ are specified further below.
 </p>
 <p>To model this, a structure $W$ includes:
 </p>
 <div class="component" id="things"><ol>
   <li> a set $Things$ of things</li>
-  <li> a function $lifetime : Things \to P(Times)$ from things to
-  sets of time instants.</li>
-  <li>a function $value : Things \times Attributes \times Times \to P(Values)$
+  <li> a set $Events$ of events</li>
+  <li> a function $events : Things \to P(Events)$ from things to
+  sets of events.</li>
+  <li>a function $value : Things \times Attributes \times Events \to
+  P(Values)$ giving the possible values of each attribute of a
+  $Thing$ at the instant of a given event.
 </li>
+<li>Attributes are only defined during the events of a thing, that
+is, $value(T,a,evt) \neq \emptyset$ implies $evt \in events(T)$.
 </ol>
 </div>
 <p>
 The range of $value$ is the set $P(Values)$, indicating that $value$
-is essentially a multi-valued function that returns a set of values (possibly empty).    When $value(x,a,t) =
-\emptyset$, we say that attribute $a$ is undefined for $x$ at time $t$.</p>
+is essentially a multi-valued function that returns a set of values (possibly empty).    When $value(x,a,evt) =
+\emptyset$, we say that attribute $a$ is undefined for $x$ at event $evt$.</p>
 
 <p>Note that this description does not say what the structure of a
-$Thing$ is, only how it may be described in terms of its lifetime
+$Thing$ is, only how it may be described in terms of its events
 and attribute values.  A thing could be a record of fixed
 attribute values; it could be a bear; it could be the Royal Society;
 it could be a transcendental number like $\pi$.  All that matters from
-our point of view is that we know how to map the $Thing$ to its lifetime and attribute mapping.
+our point of view is that we know how to map the $Thing$ to its events and attribute mapping.
 </p>
 
 
 <p>The identity of a Thing is not observable through its attributes or
-lifetime, so it is possible for two different $Things$ to be indistinguishable by their
-attribute values and lifetime.  That is, if the set of $Things = \{T_0,T_1\}$ and the attributes are
-specified as $value(T_0,a,t) = value(T_1,a,t)$ for each $t\in
-Times$ and $a \in Attributes$, this does not imply that $T_0 = T_1$.
+events, so it is possible for two different $Things$ to be indistinguishable by their
+attribute values and events.  That is, if the set of $Things = \{T_0,T_1\}$ and the attributes are
+specified as $value(T_0,a,evt) = value(T_1,a,evt)$ for each $evt\in
+Events$ and $a \in Attributes$, this does not imply that $T_0 = T_1$.
 </p>
 
 
@@ -1449,7 +1455,7 @@
   that have discrete, fixed features,  and relationships among these
   objects. Some objects, called $Entities$, are associated with
   $Things$, and their fixed attributes need to match those of the
-  associated $Thing$ during their common lifetime.  Others correspond
+  associated $Thing$ during their common events.  Others correspond
   to agents, activities, or identifiable interactions among them.</p>  
 
 <p>In this section, we detail the different subsets of $Objects$, and
@@ -1458,7 +1464,7 @@
 </p>
 
 <p>
-An <em>Object</em> is described by a time interval and attributes with
+An <em>Object</em> is described by a set of events and attributes with
 fixed values.  Objects encompass entities, activities, agents, and
 interactions (i.e., usage, generation, and other events or influence relations).
 To model this, a structure includes:
@@ -1466,13 +1472,13 @@
 
 <div class="component" id="objects">
   <ol><li> a set $Objects$ 
-</li><li> a function $lifetime : Objects \to P(Times)$ from objects to time intervals
-</li><li> a function $value : Objects \times Attributes \to P(Values)$
+</li><li> a function $events : Objects \to P(Events)$ from objects
+  to associated sets of events.
+</li><li> a function $value : Objects \times Attributes \to P(Values)$.
 </li></ol>
 </div>
 
-<p>Intuitively, $lifetime(e)$ is the time interval during which object
-$e$ exists.  The set $value(e,a)$ is the set of values of attribute $a$ during the object's lifetime.
+<p>Intuitively, $events(e)$ is the set of events in which $e$ participated.  The set $value(e,a)$ is the set of values of attribute $a$ during the object's events.
 </p>
 
 <p>As with <em>Things</em>, the range of $value$ is sets of values,
@@ -1500,10 +1506,10 @@
 <div class="component" id="entities">
   <ol><li> a set $Entities \subseteq Objects$ of entities, disjoint from $Activities$ below.
 </li><li> a function $thingOf : Entities \to Things$ that associates
-  each $Entity$ $e$ with a $Thing$, such that $lifetime(e) \subseteq
-  lifetime(thingOf(e))$ and for each $t \in
-  lifetime(e)$ and for each attribute $a$ we have $value(e,a)
-  \subseteq value(thingOf(e),a,t)$
+  each $Entity$ $e$ with a $Thing$, such that $events(e) \subseteq
+  events(thingOf(e))$ and for each $evt \in
+  events(e)$ and for each attribute $a$ we have $value(e,a)
+  \subseteq value(thingOf(e),a,evt)$.  
 </li>
 <!--<li>a relation $SpecializationOf \subseteq Entities \times Entities$
   that is irreflexive and transitive.  Furthermore, if $(e_1,e_2) \in
@@ -1511,7 +1517,7 @@
 <ol><li>
   $thingOf(e_1) = thingOf(e_2)$
   </li>
-  <li>$lifetime(e_1) \subseteq lifetime(e_2)$</li>
+  <li>$events(e_1) \subseteq events(e_2)$</li>
   <li>For each attribute $attr$ we have $value(e_1,attr) \supseteq
   value(e_2,attr)$.</li>
   </ol></li>
@@ -1522,19 +1528,19 @@
 
 <div class="remark"><p> Although both entities and things can have
   undefined or multiple attribute values, their meaning is slightly
-  different: for a thing, $value(x,a,t) = \emptyset$ means that the
-  attribute $a$ has no value at time $t$, whereas for an entity,
+  different: for a thing, $value(x,a,evt) = \emptyset$ means that the
+  attribute $a$ has no value at event $evt$, whereas for an entity,
   $value(x,a) = \emptyset$ only means that the thing associated to
   entity $x$ need not have a
-  fixed value for $a$ during the lifetime of $x$.  This does not imply
-  that $value(thingOf(e),a,t) = \emptyset$ when $t \in lifetime(e)$.
+  fixed value for $a$ during the events of $x$.  This does not imply
+  that $value(thingOf(e),a,evt) = \emptyset$ when $evt \in events(e)$.
   </p>
 
   <p>Furthermore, all of the attribute values of the entity must
-  be present in the associated thing throughout the lifetime of the
-  entity.  For example, suppose $value(thingOf(e),a,t)$ is $\{1\}$ at
-  some time in $lifetime(e)$ and $value(thingOf(e),a,t') = \{2\}$ at
-  some other time $t'$.  Then $value(e,a)$ must be $\emptyset$ because
+  be present in the associated thing throughout the events of the
+  entity.  For example, suppose $value(thingOf(e),a,evt)$ is $\{1\}$ at
+  some event $ evt \in events(e)$ and $value(thingOf(e),a,evt') = \{2\}$ at
+  some other event $evt'$.  Then $value(e,a)$ must be $\emptyset$ because
   there is no other set of values that is simultaneously contained in
   both $\{1\}$ and $\{2\}$.  </p> </div>
 
@@ -1544,10 +1550,10 @@
   <p>
   In the above description of how $Entities$ relate to $Things$, we
   require  $value(e,a) \subseteq
-  value(thingOf(e),a,t)$ whenever $t \in lifetime(e)$.  Intuitively, this means that if we are
+  value(thingOf(e),a,evt)$ whenever $evt \in events(e)$.  Intuitively, this means that if we are
   talking about a $Thing$ indirectly by describing an $Entity$, then
   any attributes we ascribe to the $Entity$ must also describe the
-  associated $Thing$ during their common lifetime.  Attributes of both
+  associated $Thing$ during their common events.  Attributes of both
   $Entities$ and $Things$ are multi-valued, so there is no
   inconsistency in saying that an entity has two different values for
   some attribute.  In some
@@ -1580,7 +1586,7 @@
   <em>collections</em>, with the following associated structure:</p>
   <div class="component" id="collections">
     <ul><li>A set $Collections \subseteq Entities$</li>
-    <li>A membership relation $MemberOf\subseteq Entities \times Collections$
+    <li>A membership relation $Contains\subseteq Collections \times Entities$
   indicating when an entity is a member of another (collection)
   entity.</li>
   </ul>
@@ -1654,7 +1660,7 @@
 <section>
 <h5> Events </h5>
 
-<p>An $Event$ is an influence whose lifetime is a single time
+<p>An $Event$ is an influence whose events is a single time
 instant, and relates an activity to an entity (which could be an
 agent).  Events have types including usage, generation, invalidation, starting and ending.  Events are instantaneous.  We introduce:
 </p>
@@ -1662,8 +1668,7 @@
 <ol><li> A set $Events \subseteq Influences$ of events, partitioned
   into disjoint subsets $Starts, Ends, Generations, Usages,
   Invalidations$.
-</li><li> A function $time : Events \to Times$ giving the time of each
-event, such that $lifetime(evt) = \{time(evt)\}$.
+</li><li> A function $time : Events \to Times$.
 </li>
 <li> A quasi-ordering on events $\preceq \subset Events \times
 Events$.  We write $e \prec e'$ when $e \preceq e'$ and $e'
@@ -1813,130 +1818,133 @@
     exists $c \in Communications$ such that $communicated(c) = (a_2,a_1)$.
     </li>
     <li id="axiom2">
+    If $e \in Entities$ then there exist $gen,inv,a,a'$ such that
+    $generated(gen) = (e,a)$ and $invalidated(inv) = (e,a')$.
+    </li>
+    <li id="axiom3">
     If $started(start) = (a_2,e,a_1)$ then there exists $gen$ such
     that $generated(gen) = (e,a_1)$.
     </li>
-    <li id="axiom3">
+    <li id="axiom4">
     If $ended(end) = (a_2,e,a_1)$ then there exists $gen$ such
     that $generated(gen) = (e,a_1)$.
     </li>
-    <li id="axiom4">
+    <li id="axiom5">
     If $d \in Derivations$ and $prov:Revision \in
     value(d,prov:type)$ and $derivationPath(deriv) = e_2 \cdot w \cdot
     e_1$ then $thingOf(e_1) = thingOf(e_2)$.
     </li>
-    <li id="axiom5">
+    <li id="axiom6">
     If $attributedTo(att) = (e,ag)$ then there exist $gen$ and $assoc$
     such that $generated(gen) = (e,a)$ and $associatedWith(assoc) = (a,ag)$.
     </li>
-    <li id="axiom6">
+    <li id="axiom7">
     If $actedFor(deleg) = (ag_2,ag_1,act)$ then there exist
     $assoc_1,assoc_2,pl_1,pl_2$ such that $associatedWith(assoc_1) = (ag_1,act,pl_1)$
     and $associatedWith(assoc_2) = (ag_2,act,pl_2)$.
     </li>
-    <li id="axiom7">
+    <li id="axiom8">
     If $generated(id) = (e,a)$ then $influenced(id) = (e,a)$.
     </li>
-    <li id="axiom8">
+    <li id="axiom9">
         If $used(id) = (e,a)$ then $influenced(id) = (e,a)$.
     </li>
-    <li id="axiom9">
+    <li id="axiom10">
             If $communicated(id) = (a_2,a_1)$ then $influenced(id) = (a_2,a_1)$.
     </li>
-    <li id="axiom10">
+    <li id="axiom11">
      If $started(id) = (a_2,e,a_1)$ then $influenced(id) = (a_2,e)$.
     </li>
-    <li id="axiom11">
+    <li id="axiom12">
          If $ended(id) = (a_2,e,a_1)$ then $influenced(id) = (a_2,e)$.
     </li>
-    <li id="axiom12">
+    <li id="axiom13">
     If $invalidated(id) = (e,a)$ then $influenced(id) = (e,a)$.
     </li>
-    <li id="axiom13">
+    <li id="axiom14">
     If $derivationPath(id) = e_2 \cdot w \cdot e_1$ then
     $influenced(id) = (e_2,e_1)$.
     </li>
-    <li id="axiom14">
+    <li id="axiom15">
     If $attributedTo(id) = (e,ag)$ then $influenced(id) = (e,ag)$.
     </li>
-    <li id="axiom15">
+    <li id="axiom16">
     If $associatedWith(id) = (a,ag,pl)$ then $influenced(id) = (a,ag)$.
     </li>
-    <li id="axiom16">
-    If $actedFor(id) = (ag_2,ag_1)$ then $influenced(id) = (ag_2,ag_1)$.
-    </li>
     <li id="axiom17">
-    If $generated(gen) = (e,a) = generated(gen')$ then $gen = gen'$.
+    If $actedFor(id) = (ag_2,ag_1)$ then $influenced(id) = (ag_2,ag_1)$.
     </li>
     <li id="axiom18">
-    If $invalidated(inv) = (e,a) = invalidated(inv')$ then $inv=inv'$.
+    If $generated(gen) = (e,a) = generated(gen')$ then $gen = gen'$.
     </li>
     <li id="axiom19">
-    If $started(st) = (a,e_1,a')$ and $started(st') = (a,e_2,a')$ then $st=st'$.
+    If $invalidated(inv) = (e,a) = invalidated(inv')$ then $inv=inv'$.
     </li>
     <li id="axiom20">
+    If $started(st) = (a,e_1,a')$ and $started(st') = (a,e_2,a')$ then $st=st'$.
+    </li>
+    <li id="axiom21">
     If $ended(end) = (a,e_1,a')$ and $ended(end') = (a,e_2,a')$ then $end=end'$.
     </li>
-    <li id="axiom21">
+    <li id="axiom22">
     If $started(st) = (a,e)$ then $st \preceq evt$ for all $evt \in
     events(a) - Invalidations$.
     </li>
-    <li id="axiom22">
+    <li id="axiom23">
         If $ended(end) = (a,e,a') $ then $evt \preceq end$ for all
     $evt \in events(a) - Invalidations$.
     </li>
-    <li id="axiom23">
+    <li id="axiom24">
     If $generated(gen) = (e,a)$ then $gen \preceq evt$ for all $evt \in events(e)$.
     </li>
-    <li id="axiom24">
+    <li id="axiom25">
         If $invalidated(inv) = (e,a)$ then $evt\preceq inv$ for all
     $evt \in events(e)$.
     </li>
-    <li id="axiom25">
+    <li id="axiom26">
     For any derivation $deriv$, with path $derivationPath(deriv) = w$,
     if $e_2 \cdot g \cdot a \cdot u \cdot e_1 $ is a substring of $w$
     where $e_1,e_2 \in Entities$, $g \in Generations$, $u \in Usages$
     and $a \in Activities$ then $u \preceq g$.
     </li>
-    <li id="axiom26">
+    <li id="axiom27">
     For any derivation $deriv$, with path $derivationPath(deriv) = e_2
     \cdot w \cdot e_1$, if $generated(gen_1) = (e_1,a_1)$ and
     $generated(gen_2) = (e_2,a_2)$ then $gen_1 \prec gen_2$.  
     </li>
-    <li id="axiom27">
+    <li id="axiom28">
     If  $associatedWith(assoc) = (a,ag,pl)$  and $started(start) = (a,e_1,a_1)$ and $invalidated(inv) =
     (ag,a_2)$ then $start \preceq inv$.
     </li>
-    <li id="axiom28">
+    <li id="axiom29">
     If  $associatedWith(assoc) = (a,ag,pl)$  and $generated(gen) =
     (ag,a_1)$ and $ended(end) = (a,e_2,a_2)$ then $gen \preceq end$.
     </li>
-    <li id="axiom29">
+    <li id="axiom30">
     If  $associatedWith(assoc) = (a,ag,pl)$  and $started(start) = (a,e_1,a_1)$ and $ended(end) =
     (ag,e_2,a_2)$ then $start \preceq end$.
     </li>
-    <li id="axiom30">
+    <li id="axiom31">
     If  $associatedWith(assoc) = (a,ag,pl)$  and $started(start) =
     (ag,e_1,a_1)$ and $ended(end) = (a,e_2,a_2)$ then $start \preceq end$.
     </li>
-       <li id="axiom31">
+       <li id="axiom32">
     If $attributedTo(attrib) = (e,ag)$  and $generated(gen_1) =
     (ag_1,a_1)$ and $generated(gen_2) = (e,a_2)$ then $gen_1 \preceq gen_2$.
     </li>
-       <li id="axiom32">
+       <li id="axiom33">
     If $attributedTo(attrib) = (e,ag)$  and $started(start) =
     (ag_1,e_1,a_1)$ and $generated(gen) = (e,a_2)$ then $start \preceq gen$.
     </li>
-       <li id="axiom33">
+       <li id="axiom34">
     If $actedFor(deleg) = (ag_2,ag_1,a)$  and $generated(gen) =
     (ag_1,a_1)$ and $invalidated(inv) = (ag_2,a_2)$ then $gen \preceq inv$.
     </li>
-       <li id="axiom34">
+       <li id="axiom35">
     If $actedFor(deleg) = (ag_2,ag_1,a)$ and $started(start) =
     (ag_1,e_1,a_1)$ and $ended(end) = (ag_2,e_2,a_2)$ then $start \preceq
     end$.
     </li>
-    
     </ol>
 </div>
 
@@ -1945,7 +1953,7 @@
   constraints hold in all structures.</p>
 
 <div class="remark">
-  <p> Axioms 21 and 22 do not require that invalidation events
+  <p> Axioms 22 and 23 do not require that invalidation events
   originating from an activity follow the activity's start
   event(s) or precede its end event(s).
   This is because
@@ -1974,7 +1982,10 @@
 For example, the functions $used, generated, invalidated, started,
 ended$ mapping events to their associated entities or activities, and
 $communicated, associatedWith, attributedTo, actedFor$ associating
-other types of influences with appropriate data.  On the other hand,
+other types of influences with appropriate data. 
+</p>
+  <p>
+  On the other hand,
 some features are more distinctive, and represent areas where formal
 modeling has been used to guide the development of PROV.  Derivation
 paths are one such distinctive feature; they correspond to an
@@ -2091,8 +2102,6 @@
 <ol>
 <li>[WF] $id$ denotes an entity $ent = \rho(id) \in Entities$
 </li>
-<li>There exists $gen,a$ such that $generated(gen) = (e,a)$.</li>
-<li>There exists $inv,a'$ such that $invalidated(inv) = (e,a)$.</li>
 <li>the attributes match: $match(W,ent, attrs)$.
 </li>
 </ol>
@@ -2500,11 +2509,11 @@
 <!--<li>$(ent_1,ent_2) \in SpecializationOf$.-->
   <li>The two entities present aspects of the same thing, that is, $thingOf(ent_1) = thingOf(ent_2)$.
 </li>
-<li>The lifetime of $ent_1$ is contained in that of $ent_2$, i.e. $lifetime(ent_1) \subseteq lifetime(ent_2)$.
+<li>The events of $ent_1$ is contained in that of $ent_2$, i.e. $events(ent_1) \subseteq events(ent_2)$.
 </li>
 <li>For each attribute $attr$ we have $value(ent_1,attr) \supseteq value(ent_2,attr)$.</li>
 <li>At least one of these inclusions is strict: that is, either
-  $lifetime(ent_1) \subsetneq lifetime(ent_2)$ or for some $attr$ we have
+  $events(ent_1) \subsetneq events(ent_2)$ or for some $attr$ we have
  $value(ent_1,attr) \supsetneq value(ent_2,attr)$.
 </li>
 </ol>
@@ -2516,14 +2525,14 @@
   <li>The two entities are different: $ent_1 \neq ent_2$.
   <li>The two Entities refer to the same Thing, that is, $thingOf(ent_1) = thingOf(ent_2)$.
 </li>
-<li>The lifetime of $ent_1$ is contained in that of $ent_2$, i.e. $lifetime(ent_1) \subseteq lifetime(ent_2)$.
+<li>The events of $ent_1$ is contained in that of $ent_2$, i.e. $events(ent_1) \subseteq events(ent_2)$.
 </li>
 <li>For each attribute $attr$ we have $value(ent_1,attr) \supseteq value(ent_2,attr)$.
 </li></ol>
 -->
 <p>The second criterion says that the two Entities present (possibly different) aspects of
 the same Thing. Note that the third criterion allows $ent_1$ and
-$ent_2$ to have the same lifetime (or that of $ent_2$ can be larger).
+$ent_2$ to have the same events (or that of $ent_2$ can be larger).
 The last criterion allows $ent_1$ to have more defined attributes than
 $ent_2$, but they must include the attributes defined by $ent_2$.  Two
   different entities that have the same attributes can also be related
@@ -2566,7 +2575,7 @@
   = \rho(c) \in Collections$ and $ent = \rho(e) \in Entities$.
 </li>
 <li>The entity $ent$ is a member of the collection $coll$: that is,
-$(ent,coll) \in MemberOf$.
+$(coll,ent) \in Contains$.
 </li></ol>
 </div>
 
@@ -2651,7 +2660,7 @@
       $\rho(c) \in Collections$.</li>
       <li>$W,\rho\models typeOf(c,EmptyCollection)$ holds if and only if
       $\rho(c) \in Collections$ and there is no $e \in Entities$ such
-    that $(e,\rho(c)) \in MemberOf$.</li>
+    that $(\rho(c),e) \in  Contains$.</li>
       </ol>
       
     </div>
@@ -2708,9 +2717,8 @@
 \end{array}$</div>
 
 <div class="proof">
-  <p> This follows from the semantics of entity formulas, specifically
-  the requirement that generation and invalidation events exist for
-  the entity.</p>
+  <p> This follows from <a href="#axiom2">Axiom 2</a>, which
+  requires that generation and invalidation events exist for each entity.</p>
   </div>
 <div class="inference" number="8" id="activity-start-end-inference">$\begin{array}[t]{l}
 \forall a,t_1,t_2,attrs.~
@@ -2738,7 +2746,7 @@
 \end{array}$</div>
 
 <div class="proof">
-  <p>This follows from <a href="#axiom2">Axiom 2</a>.</p>
+  <p>This follows from <a href="#axiom3">Axiom 3</a>.</p>
   </div>
 <div class="inference" number="10" id="wasEndedBy-inference">$\begin{array}[t]{l}
 \forall id,a,e_1,a_1,t,attrs.~
@@ -2750,7 +2758,7 @@
 \end{array}$</div>
 
 <div class="proof">
-  <p>This follows from <a href="#axiom3">Axiom 3</a>.</p>
+  <p>This follows from <a href="#axiom4">Axiom 4</a>.</p>
   </div>
 <div class="inference" number="11"
   id="derivation-generation-use-inference">
@@ -2779,7 +2787,7 @@
 \end{array}$</div>
 <div class="proof">
   <p> This follows from the semantics of derivation steps (precise or
-  imprecise) and <a href="#axiom4">Axiom 4</a>.</p>
+  imprecise) and <a href="#axiom5">Axiom 5</a>.</p>
   </div>
 <div class="inference" number="13" id="attribution-inference">$\begin{array}[t]{l}
 \forall att,e,ag,attrs.~
@@ -2791,7 +2799,7 @@
 \end{array}$</div>
 <div class="proof">
   <p>This follows from the semantics of generation, association, and
-  attribution, by <a href="#axiom5">Axiom 5</a>.</p>
+  attribution, by <a href="#axiom6">Axiom 6</a>.</p>
   </div>
   
 <div class="inference" number="14" id="delegation-inference">$\begin{array}[t]{l}
@@ -2803,7 +2811,7 @@
 \exists id_1,pl_1,id_2,pl_2.~wasAssociatedWith(id_1,a,ag_1,pl_1,[]) \wedge wasAssociatedWith(id_2,a,ag_2,pl_2,[])
 \end{array}$</div>
 <div class="proof">
-  <p>This follows from the semantics of association and delegation, by <a href="#axiom6">Axiom 6</a>.</p>
+  <p>This follows from the semantics of association and delegation, by <a href="#axiom7">Axiom 7</a>.</p>
   </div>
 <div class="inference" number="15" id="influence-inference"><ol><li>$\begin{array}[t]{l}
 \forall id,e,a,t,attrs.~
@@ -2880,7 +2888,7 @@
 \end{array}$</li></ol></div>
 
 <div class="proof">
-  <p>This follows via <a href="#axiom7">Axioms 7</a> through <a href="#axiom16">16</a>.
+  <p>This follows via <a href="#axiom8">Axioms 8</a> through <a href="#axiom17">17</a>.
   </div>
 <div class="inference" number="16" id="alternate-reflexive">$\begin{array}[t]{l}
 \forall e.~
@@ -2935,8 +2943,8 @@
 <div class="proof">
   <p> Suppose the conditions for specialization hold of $ent_1$ and
   $ent_2$ and for $ent_2$ and $ent_3$, where $ent_1 = \rho(e_1)$ and $ent_2 = \rho(e_2)$ and $ent_3 =
-  \rho(e_3)$. Then $lifetime(e_1) \subseteq lifetime(e_2) \subseteq
-  lifetime(e_3)$.  Moreover, 
+  \rho(e_3)$. Then $events(e_1) \subseteq events(e_2) \subseteq
+  events(e_3)$.  Moreover, 
   $value(obj_2,attr) \supseteq value(obj_3,attr)$, and similarly
   $value(obj_1,attr)\supseteq value(obj_2,attr)$ so $value(obj_1,attr)
   \supseteq value(obj_3,attr)$.  Finally, at least one of the
@@ -2978,9 +2986,6 @@
   $e_2$ obviously denotes an entity, we can conclude $W,\rho \models entity(e_2,attrs)$.
   </p>
 </div>
-<div class="todo"> <p> How do we know $e_2$ has
-  generation/invalidation events?  May need axiom.</p>
-  </div>
 <section>
 <h2>Constraints</h2>
 <section>
@@ -3087,7 +3092,7 @@
 \end{array}$</div>
 <div class="proof">
   <p>
-  This follows from <a href="#axiom17">Axiom 17</a>.
+  This follows from <a href="#axiom18">Axiom 18</a>.
   </p>
   </div>
 <div class="constraint" number="25" id="unique-invalidation">$\begin{array}[t]{l}
@@ -3100,7 +3105,7 @@
 \end{array}$</div>
 <div class="proof">
   <p>
-  This follows from <a href="#axiom17">Axiom 18</a>.
+  This follows from <a href="#axiom19">Axiom 19</a>.
   </p>
   </div>
 <div class="constraint" number="26" id="unique-wasStartedBy">$\begin{array}[t]{l}
@@ -3113,7 +3118,7 @@
 \end{array}$</div>
 <div class="proof">
   <p>
-  This follows from <a href="#axiom17">Axiom 19</a>.
+  This follows from <a href="#axiom20">Axiom 20</a>.
   </p>
   </div>
 
@@ -3127,7 +3132,7 @@
 \end{array}$</div>
 <div class="proof">
   <p>
-  This follows from <a href="#axiom17">Axiom 20</a>.
+  This follows from <a href="#axiom21">Axiom 21</a>.
   </p>
   </div>
 <div class="constraint" number="28" id="unique-startTime">$\begin{array}[t]{l}
@@ -3173,7 +3178,7 @@
 start \precedes end
 \end{array}$</div>
 <div class="proof">
-  <p>This follows from <a href="#axiom21">Axiom 21</a>.
+  <p>This follows from <a href="#axiom22">Axiom 22</a>.
   </p>
   </div>
   
@@ -3186,7 +3191,7 @@
 start_1 \precedes start_2
 \end{array}$</div>
 <div class="proof">
-  <p>This follows from <a href="#axiom21">Axiom 21</a>.
+  <p>This follows from <a href="#axiom22">Axiom 22</a>.
   </p>
   </div>
   
@@ -3219,8 +3224,8 @@
 use \precedes end
 \end{array}$</li></ol></div>
 <div class="proof">
-  <p>Part 1 follows from <a href="#axiom21">Axiom 21</a> and part 2
-  follows from <a href="#axiom22">Axiom 22</a>.
+  <p>Part 1 follows from <a href="#axiom22">Axiom 22</a> and part 2
+  follows from <a href="#axiom23">Axiom 23</a>.
   </p>
   </div>
   
@@ -3240,8 +3245,8 @@
 gen \precedes end
 \end{array}$</li></ol></div>
 <div class="proof">
-  <p>Part 1 follows from <a href="#axiom21">Axiom 21</a> and part 2
-  follows from <a href="#axiom22">Axiom 22</a>.
+  <p>Part 1 follows from <a href="#axiom22">Axiom 22</a> and part 2
+  follows from <a href="#axiom23">Axiom 23</a>.
   </p>
   </div>
   
@@ -3271,7 +3276,7 @@
 \end{array}$</div>
 
 <div class="proof">
-  <p>This follows from <a href="#axiom22">Axiom 22</a>.
+  <p>This follows from <a href="#axiom23">Axiom 23</a>.
   </p>
   </div>
 
@@ -3285,7 +3290,7 @@
 \end{array}$</div>
 
 <div class="proof">
-  <p>This follows from <a href="#axiom23">Axiom 23</a>.
+  <p>This follows from <a href="#axiom24">Axiom 24</a>.
   </p>
   </div>
 
@@ -3299,7 +3304,7 @@
 \end{array}$</div>
 
 <div class="proof">
-  <p>This follows from <a href="#axiom24">Axiom 24</a>.
+  <p>This follows from <a href="#axiom25">Axiom 25</a>.
   </p>
   </div>
 
@@ -3313,7 +3318,7 @@
 \end{array}$</div>
 
 <div class="proof">
-  <p>This follows from <a href="#axiom23">Axiom 23</a>.
+  <p>This follows from <a href="#axiom24">Axiom 24</a>.
   </p>
   </div>
 
@@ -3327,7 +3332,7 @@
 \end{array}$</div>
 
 <div class="proof">
-  <p>This follows from <a href="#axiom24">Axiom 24</a>.
+  <p>This follows from <a href="#axiom25">Axiom 25</a>.
   </p>
   </div>
 
@@ -3342,7 +3347,7 @@
 \end{array}$</div>
 
 <div class="proof">
-  <p>This follows from <a href="#axiom25">Axiom 25</a>.
+  <p>This follows from <a href="#axiom26">Axiom 26</a>.
   </p>
   </div>
 
@@ -3356,7 +3361,7 @@
 \end{array}$</div>
 
 <div class="proof">
-  <p>This follows from <a href="#axiom25">Axiom 26</a>.
+  <p>This follows from <a href="#axiom27">Axiom 27</a>.
   </p>
   </div>
 
@@ -3377,8 +3382,8 @@
 \end{array}$</li></ol></div>
 
 <div class="proof">
-  <p>Part 1 follows from <a href="#axiom23">Axiom 23</a>.  Part 2
-  follows from <a href="#axiom24">Axiom 24</a>.
+  <p>Part 1 follows from <a href="#axiom24">Axiom 24</a>.  Part 2
+  follows from <a href="#axiom25">Axiom 25</a>.
   </p>
   </div>
 
@@ -3399,8 +3404,8 @@
 \end{array}$</li></ol></div>
 
 <div class="proof">
-  <p>Part 1 follows from <a href="#axiom23">Axiom 23</a>.  Part 2
-  follows from <a href="#axiom24">Axiom 24</a>.
+  <p>Part 1 follows from <a href="#axiom24">Axiom 24</a>.  Part 2
+  follows from <a href="#axiom25">Axiom 25</a>.
   </p>
   </div>
 
@@ -3415,7 +3420,7 @@
 
 
 <div class="proof">
-  <p> This follows from <a href="#axiom23">Axiom 23</a> and the fact
+  <p> This follows from <a href="#axiom24">Axiom 24</a> and the fact
   that if $e_2$ specializes $e_1$ then all of the events of the $e_2$
   are events of $e_1$.  Thus, the generation of $e_1$ precedes all
   events of $e_2$.
@@ -3432,7 +3437,7 @@
 \end{array}$</div>
 
 <div class="proof">
-  <p> This follows from <a href="#axiom23">Axiom 24</a> and the fact
+  <p> This follows from <a href="#axiom25">Axiom 25</a> and the fact
   that if $e_2$ specializes $e_1$ then all of the events of the $e_2$
   are events of $e_1$.  Thus, the invalidation of $e_1$ follows all
   events of $e_2$.
@@ -3470,8 +3475,8 @@
 \end{array}$</li></ol></div>
 
 <div class="proof">
-  <p>The four parts follow from <a href="#axiom27">Axiom 27</a> through
-  <a href="#axiom30">Axiom 30</a> respectively.
+  <p>The four parts follow from <a href="#axiom28">Axiom 28</a> through
+  <a href="#axiom31">Axiom 31</a> respectively.
   </p>
   </div>
 
@@ -3492,8 +3497,8 @@
 \end{array}$</li></ol></div>
 
 <div class="proof">
-  <p>These properties follow from <a href="#axiom31">Axiom 31</a> and
-  <a href="#axiom32">Axiom 32</a>.
+  <p>These properties follow from <a href="#axiom32">Axiom 32</a> and
+  <a href="#axiom33">Axiom 33</a>.
   </p>
   </div>
 
@@ -3514,8 +3519,8 @@
 \end{array}$</li></ol></div>
 
 <div class="proof">
-  <p>These properties follow from <a href="#axiom33">Axiom 33</a> and
-  <a href="#axiom34">Axiom 34</a>.
+  <p>These properties follow from <a href="#axiom34">Axiom 34</a> and
+  <a href="#axiom35">Axiom 35</a>.
   </p>
   </div>
 
@@ -3827,6 +3832,10 @@
   href="#structures">Section 3</a>, and finally verifying that the
   axioms hold.</p>
 
+  <p>First, without loss of generality, we assume that all times
+  specified in activity or event formulas in $I$ are ground values.
+  If not, set each variable in such a position to some dummy value.</p>
+
   <section>
 <h4>Sets</h4>
   <p> The sets of structure $M(I)$ are: </p>
@@ -3835,17 +3844,25 @@
   Entities &=& \{id \mid entity(id,attrs) \in I\}\\
   Plans &=& \{pl \mid wasAssociatedWith(id,ag,act,pl,attrs) \in I, pl
   \neq -\}\\
-  Collections &=& \{e \mid memberOf(e',e) \in I\} \\
+  Collections &=& \{e \mid hadMember(e',e) \in I\} \\
   &\cup& \{e \mid
   entity(e,attrs) \in I, prov:type=prov:emptyCollection \in attrs\}\\
   
   Activities &=& \{id \mid activity(id,attrs) \in I\}\\
+  &\cup& \{a_{id},a'_{id} \mid id \in Entities\}\\
   &\cup& \{a_{id} \mid wasDerivedFrom(id,e_2,e_1,-,-,-,attrs) \in I\}\\
   Agents &=& \{id \mid agent(id,attrs) \in I\}\\
   \\
   Usages &=&  \{id \mid used(id,a,e,t,attrs) \in I\}\\
-  &\cup& \{u_{id} \mid wasDerivedFrom(id,e_2,e_1,-,-,-,attrs) \in I\}\\  Generations &=&  \{id \mid wasGeneratedBy(id,e,a,t,attrs) \in I\}\\
-  &\cup& \{g_{id} \mid wasDerivedFrom(id,e_2,e_1,-,-,-,attrs) \in I\}\\  Invalidations &=&  \{id \mid wasInvalidatedBy(id,e,a,t,attrs) \in I\}\\
+  &\cup& \{u_{id} \mid wasDerivedFrom(id,e_2,e_1,-,-,-,attrs) \in
+  I\}\\
+  Generations &=&  \{id \mid wasGeneratedBy(id,e,a,t,attrs) \in I\}\\
+  &\cup& \{g_{id} \mid wasDerivedFrom(id,e_2,e_1,-,-,-,attrs) \in
+  I\}\\
+ & \cup & \{g_{id} \mid id \in Entities\}\\
+   Invalidations &=&  \{id \mid wasInvalidatedBy(id,e,a,t,attrs) \in
+  I\}\\
+  & \cup & \{i_{id} \mid id \in Entities\}\\
   Starts &=&  \{id \mid wasStartedBy(id,a,e,a',t,attrs) \in I\}\\
   Ends &=&  \{id \mid wasEndedBy(id,a,e,a',t,attrs) \in I\}\\
   Events &=& Usages \cup Generations \cup Invalidations \cup Starts
@@ -3905,8 +3922,8 @@
 &\cup& \{id \mid wasInvalidatedBy(id,e,a,t,attrs) \in I\}\\
 &\cup& \{id \mid wasStartedBy(id,a,e,a',t,attrs) \in I\}\\
 &\cup& \{id \mid wasEndedBy(id,a,e,a',t,attrs) \in I\}\\
+&\cup& \{g_e,i_e\}\\
 events(e) &=& events'(e) \cup \bigcup_{specializationOf(e',e) \in I} events'(e')\\
-lifetime(e) &=& \{time(e) \mid evt \in events(e)\}\\
 value'(e,a) &=& \{v \mid entity(e,attrs) \in I, (a=v) \in attrs\}
 \quad (a \neq uniq)\\
 value'(e,uniq) &=&\{ uniq_{e}\}\\
@@ -3922,7 +3939,9 @@
 also define the set of all events involved in $e$ as the set of events
 immediately involved in $e$ or any specialization of $e$.  Similarly,
 the values of attributes of $e$ are those immediately declared for $e$
-along with those of any specialization.
+along with those of any specialization.  We also introduce dummy
+generation and invalidation events for each entity $e$, along with
+activities $a_e,a'_e$ to perform them.
 </p>
 <p> Similarly, for $Things$, we
 employ an auxiliary function $events:Things \to P(Events)$ that collects the set of all
@@ -3930,15 +3949,9 @@
 \[
 \begin{eqnarray*}
 events(T) &=& \bigcup_{e \in T} events(e)\\
-lifetime(e) &=& \{time(e) \mid evt \in events(T)\}\\
-value(T,a,t) &=& \bigcup_{e \in T, t \in lifetime(e)} value(e,a)\\
+value(T,a,evt) &=& \bigcup_{e \in T, evt \in events(e)} value(e,a)\\
 \end{eqnarray*}
 \]
-<div class="note">
-  <p> TODO: The above treatment of time/lifetime is flawed, as we are
-defining lifetimes to be sets of times, not intervals. What if
-  some of the times are symbolic?</p>
-  </div>
 
 <p> The functions $startTime$ and $endTime$ mapping activities to
   their start and end times is defined as follows:
@@ -3973,8 +3986,13 @@
   </p>
 \[\begin{eqnarray*}
   used(id) &=& (a,e) \text{ where } used(id,a,e,t,attrs) \in I\\
-  generated(id) &=&  (e,a) \text{ where } wasGeneratedBy(id,e,a,t,attrs) \in I\\
+  used(u_{id}) &=& (a_{id},e_1) \text{ where } wasDerivedFrom(id,e_2,e_1,-,-,-,attrs) \in I\\
+  generated(id) &=&  (e,a) \text{ where }
+  wasGeneratedBy(id,e,a,t,attrs) \in I\\
+ generated(g_{id}) &=& (e_2,a_{id}) \text{ where } wasDerivedFrom(id,e_2,e_1,-,-,-,attrs) \in I\\
+ generated(g_e) &=& (e,a_e) \text{ where } e \in Entities\\
   invalidated(id) &=& (e,a) \text{ where } wasInvalidatedBy(id,e,a,t,attrs) \in I\\
+ invalidated(i_e) &=& (e,a'_e) \text{ where } e \in Entities\\
   started(id) &=& (a,e,a') \text{ where } wasStartedBy(id,a,e,a',t,attrs) \in I\\
   ended(id) &=& (a,e,a') \text{ where }wasEndedBy(id,a,e,a',t,attrs) \in I\\
  \\
@@ -4006,9 +4024,9 @@
   for the directed graph that is used during validation of $I$ to
   test for cycles amond event ordering constraints.  See Sec. 7.1 of PROV-CONSTRAINTS [[PROV-CONSTRAINTS]].</p>
 
-    <p> Finally, the collection membership relation $MemberOf$ is
+    <p> Finally, the collection membership relation $Contains$ is
     defined as follows:</p>
-    \[(e,c) \in MemberOf \iff memberOf(e,c) \in I\]
+    \[(c,e) \in Contains \iff hadMember(c,e) \in I\]
     
 </section>
     <section>
@@ -4024,47 +4042,53 @@
 <ol><li>
   Axiom 1 follows because $I$ is normalized with respect to Inference 6.
   </li>
+      <li> Axiom 2 follows from the construction, since we add dummy
+  generation and invalidation events for every entity.</li>
 <li>
-Axioms 2 and 3 follow because $I$ is normalized with respect to
+Axioms 3 and 4 follow because $I$ is normalized with respect to
   Inference 9 and 10 respectively.
-  </li><li>
-Axioms 5 and 6 follow because $I$ is normalized with respect to
+  </li>
+  <li>Axiom 5 follows because $I$ is normalized with respect to
+  Inference 12.
+  </li>
+  <li>
+  Axioms 6 and 7 follow because $I$ is normalized with respect to
   Inference 13 and 14 respectively.
   </li><li>
-Axioms 7 through 16 follow because $I$ is normalized with respect to
+Axioms 8 through 17 follow because $I$ is normalized with respect to
   Inference 15.
   </li><li>
-Axioms 17 through 20 follow because $I$ is normalized with respect to
+Axioms 18 through 21 follow because $I$ is normalized with respect to
   uniqueness constraints 24 through 27.
   </li><li>
-  Axiom 21 follows because constraints 30, 31, 33, 34 ensure that a
+  Axiom 22 follows because constraints 30, 31, 33, 34 ensure that a
   start event for an activity precedes any other start, end, usage or
   generation events involving that activity.
   </li>
   <li>
-  Axiom 22 follows because constraints 30, 32, 33, 34 ensure that an
+  Axiom 23 follows because constraints 30, 32, 33, 34 ensure that an
   end event for an activity follows any other events involving that activity.
   </li>
   <li>
-  Axiom 23 follows because constraints 34, 36, 37, 39 ensure that a
+  Axiom 24 follows because constraints 34, 36, 37, 39 ensure that a
   generation event for an entity precedes any other events involving that entity.
   </li>
   <li>
-  Axiom 24 follows because constraints 36, 38, 40, 43, 44 ensure that an
+  Axiom 25 follows because constraints 36, 38, 40, 43, 44 ensure that an
   invalidation event for an entity  follows any other generation,
   usage, or invalidation events involving
   that entity.
   </li>
-  <li>Axiom 25 follows from constraint 41.</li>
-  <li> Axiom 26 follows from constraint 42 and from the fact that the
+  <li>Axiom 26 follows from constraint 41.</li>
+  <li> Axiom 27 follows from constraint 42 and from the fact that the
   event ordering constraint graph $G_I$ associated with a valid
   instance $I$ cannot have any cycles involving a strict precedence
   edge.
   </li>
-  <li> Axioms 27 through 30 follow from Constraint 47.</li>
-  <li> Axioms 31 and 32 follow from Constraint 48.</li>
-  <li> Axioms 33 and 34 follow from Constraint 49.</li>
-    
+  <li> Axioms 28 through 31 follow from Constraint 47.</li>
+  <li> Axioms 32 and 33 follow from Constraint 48.</li>
+  <li> Axioms 34 and 35 follow from Constraint 49.</li>
+
   </ol>
   </section>
     
--- a/semantics/releases/NOTE-prov-sem-20130430/Overview.html	Fri Apr 05 17:00:28 2013 +0100
+++ b/semantics/releases/NOTE-prov-sem-20130430/Overview.html	Fri Apr 05 17:21:40 2013 +0100
@@ -735,51 +735,12 @@
 .section dl.attrs dd, .section dl.eldef dd {
     margin-bottom:  0;
 }
-</style><style>/* --- ISSUES/NOTES --- */
-div.issue-title, div.note-title {
-    padding-right:  1em;
-    min-width: 7.5em;
-    color: #b9ab2d;
-}
-div.issue-title { color: #e05252; }
-div.note-title { color: #52e052; }
-div.issue-title span, div.note-title span {
-    text-transform: uppercase;
-}
-div.note, div.issue {
-    margin-top: 1em;
-    margin-bottom: 1em;
-}
-.note > p:first-child, .issue > p:first-child { margin-top: 0 }
-.issue, .note {
-    padding: .5em;
-    border-left-width: .5em;
-    border-left-style: solid;
-}
-div.issue, div.note {
-    padding: 0.5em;
-    margin: 1em 0;
-    position: relative;
-    clear: both;
-}
-span.note, span.issue { padding: .1em .5em .15em; }
-
-.issue {
-    border-color: #e05252;
-    background: #fbe9e9;
-}
-.note {
-    border-color: #52e052;
-    background: #e9fbe9;
-}
-
-
 </style><link rel="stylesheet" href="http://www.w3.org/StyleSheets/TR/W3C-WG-NOTE"><style type="text/css">DIV.MathJax_MathML {text-align: center; margin: .75em 0px}
 .MathJax_MathML {font-style: normal; font-weight: normal; line-height: normal; font-size: 100%; font-size-adjust: none; text-indent: 0; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; border: 0; padding: 0; margin: 0}
 span.MathJax_MathML {display: inline}
 div.MathJax_MathML {display: block}
 .MathJax_mmlExBox {display: block; overflow: hidden; height: 1px; width: 60ex; padding: 0; border: 0; margin: 0}
-</style><!--[if lt IE 9]><script src='http://www.w3.org/2008/site/js/html5shiv.js'></script><![endif]--><!--[if lt IE 9]><script src='http://www.w3.org/2008/site/js/html5shiv.js'></script><![endif]--></head> 
+</style><!--[if lt IE 9]><script src='http://www.w3.org/2008/site/js/html5shiv.js'></script><![endif]--></head> 
   <body><div id="MathJax_Message" style="display: none; "></div><div class="head">
   <p>
     
@@ -877,22 +838,22 @@
 This document is part of the PROV family of documents, a set of documents defining various aspects that are necessary to achieve the vision of inter-operable
 interchange of provenance information in heterogeneous environments such as the Web.  These documents are listed below. Please consult the [<cite><a class="bibref" href="#bib-PROV-OVERVIEW">PROV-OVERVIEW</a></cite>] for a guide to reading these documents. 
 <ul>
-<li> <a href="http://www.w3.org/TR/2013/WD-prov-overview-20130312/">PROV-OVERVIEW</a> (To be published as Note), an overview of the PROV family of documents [<cite><a class="bibref" href="#bib-PROV-OVERVIEW">PROV-OVERVIEW</a></cite>];</li>
-<li> <a href="http://www.w3.org/TR/2013/WD-prov-primer-20130312/">PROV-PRIMER</a> (To be published as Note), a primer for the PROV data model [<cite><a class="bibref" href="#bib-PROV-PRIMER">PROV-PRIMER</a></cite>];</li>
-<li> <a href="http://www.w3.org/TR/2013/PR-prov-o-20130312/">PROV-O</a> (Proposed Recommendation), the PROV ontology, an OWL2 ontology allowing the mapping of PROV to RDF [<cite><a class="bibref" href="#bib-PROV-O">PROV-O</a></cite>];</li>
-<li> <a href="http://www.w3.org/TR/2013/PR-prov-dm-20130312/">PROV-DM</a> (Proposed Recommendation), the PROV data model for provenance [<cite><a class="bibref" href="#bib-PROV-DM">PROV-DM</a></cite>];</li>
-<li> <a href="http://www.w3.org/TR/2013/PR-prov-n-20130312/">PROV-N</a> (Proposed Recommendation), a notation for provenance aimed at human consumption [<cite><a class="bibref" href="#bib-PROV-N">PROV-N</a></cite>];</li>
-<li> <a href="http://www.w3.org/TR/2013/PR-prov-constraints-20130312/">PROV-CONSTRAINTS</a>
-(Proposed Recommendation), a set of constraints applying to the PROV
+<li> <a href="http://www.w3.org/TR/2013/NOTE-prov-overview-20130430/">PROV-OVERVIEW</a> (Note), an overview of the PROV family of documents [<cite><a class="bibref" href="#bib-PROV-OVERVIEW">PROV-OVERVIEW</a></cite>];</li>
+<li> <a href="http://www.w3.org/TR/2013/NOTE-prov-primer-20130430/">PROV-PRIMER</a> (Note), a primer for the PROV data model [<cite><a class="bibref" href="#bib-PROV-PRIMER">PROV-PRIMER</a></cite>];</li>
+<li> <a href="http://www.w3.org/TR/2013/REC-prov-o-20130430/">PROV-O</a> (Recommendation), the PROV ontology, an OWL2 ontology allowing the mapping of PROV to RDF [<cite><a class="bibref" href="#bib-PROV-O">PROV-O</a></cite>];</li>
+<li> <a href="http://www.w3.org/TR/2013/REC-prov-dm-20130430/">PROV-DM</a> (Recommendation), the PROV data model for provenance [<cite><a class="bibref" href="#bib-PROV-DM">PROV-DM</a></cite>];</li>
+<li> <a href="http://www.w3.org/TR/2013/REC-prov-n-20130430/">PROV-N</a> (Recommendation), a notation for provenance aimed at human consumption [<cite><a class="bibref" href="#bib-PROV-N">PROV-N</a></cite>];</li>
+<li> <a href="http://www.w3.org/TR/2013/REC-prov-constraints-20130430/">PROV-CONSTRAINTS</a>
+(Recommendation), a set of constraints applying to the PROV
 data model [<cite><a class="bibref" href="#bib-PROV-CONSTRAINTS">PROV-CONSTRAINTS</a></cite>];</li>
-<li> <a href="http://www.w3.org/TR/2013/WD-prov-xml-20130312/">PROV-XML</a> (To be published as Note),  an XML schema for the PROV data model [<cite><a class="bibref" href="#bib-PROV-XML">PROV-XML</a></cite>];</li>
-<li> <a href="http://www.w3.org/TR/2013/WD-prov-aq-20130312/">PROV-AQ</a> (To be published as Note), the mechanisms for accessing and querying provenance [<cite><a class="bibref" href="#bib-PROV-AQ">PROV-AQ</a></cite>]; </li>
-<li> <a href="http://www.w3.org/TR/2013/WD-prov-dictionary-20130312/">PROV-DICTIONARY</a> (To be published as Note) introduces a specific type of collection, consisting of key-entity pairs [<cite><a class="bibref" href="#bib-PROV-DICTIONARY">PROV-DICTIONARY</a></cite>];</li>
-<li> <a href="http://www.w3.org/TR/2013/WD-prov-dc-20130312/">PROV-DC</a> (To be published as Note) provides a mapping between PROV and Dublic Core Terms [<cite><a class="bibref" href="#bib-PROV-DC">PROV-DC</a></cite>];</li>
-<li> <a href="http://www.w3.org/TR/2013/WD-prov-sem-20130312/">PROV-SEM</a>
-(To be published as Note), a declarative specification in terms of
+<li> <a href="http://www.w3.org/TR/2013/NOTE-prov-xml-20130430/">PROV-XML</a> (Note),  an XML schema for the PROV data model [<cite><a class="bibref" href="#bib-PROV-XML">PROV-XML</a></cite>];</li>
+<li> <a href="http://www.w3.org/TR/2013/NOTE-prov-aq-20130430/">PROV-AQ</a> (Note), the mechanisms for accessing and querying provenance [<cite><a class="bibref" href="#bib-PROV-AQ">PROV-AQ</a></cite>]; </li>
+<li> <a href="http://www.w3.org/TR/2013/NOTE-prov-dictionary-20130430/">PROV-DICTIONARY</a> (Note) introduces a specific type of collection, consisting of key-entity pairs [<cite><a class="bibref" href="#bib-PROV-DICTIONARY">PROV-DICTIONARY</a></cite>];</li>
+<li> <a href="http://www.w3.org/TR/2013/NOTE-prov-dc-20130430/">PROV-DC</a> (Note) provides a mapping between PROV and Dublic Core Terms [<cite><a class="bibref" href="#bib-PROV-DC">PROV-DC</a></cite>];</li>
+<li> <a href="http://www.w3.org/TR/2013/NOTE-prov-sem-20130430/">PROV-SEM</a>
+(Note), a declarative specification in terms of
 first-order logic of the PROV data model (this document);</li>
-<li> <a href="http://www.w3.org/TR/2013/WD-prov-links-20130312/">PROV-LINKS</a> (To be published as Note) introduces a mechanism to link across bundles [<cite><a class="bibref" href="#bib-PROV-LINKS">PROV-LINKS</a></cite>].</li>
+<li> <a href="http://www.w3.org/TR/2013/NOTE-prov-links-20130430/">PROV-LINKS</a> (Note) introduces a mechanism to link across bundles [<cite><a class="bibref" href="#bib-PROV-LINKS">PROV-LINKS</a></cite>].</li>
 </ul>
 
 
@@ -940,7 +901,7 @@
       
     
   
-</section><section id="toc"><h2 class="introductory">Table of Contents</h2><ul class="toc"><li class="tocline"><a href="#introduction" class="tocxref"><span class="secno">1. </span>Introduction</a><ul class="toc"><li class="tocline"><a href="#purpose" class="tocxref"><span class="secno">1.1 </span>Purpose of this document</a></li><li class="tocline"><a href="#structure-of-this-document" class="tocxref"><span class="secno">1.2 </span>Structure of this document</a></li><li class="tocline"><a href="#audience" class="tocxref"><span class="secno">1.3 </span> Audience </a></li></ul></li><li class="tocline"><a href="#basics" class="tocxref"><span class="secno">2. </span> Basics </a><ul class="toc"><li class="tocline"><a href="#identifiers" class="tocxref"><span class="secno">2.1 </span> Identifiers </a></li><li class="tocline"><a href="#attributes-and-values" class="tocxref"><span class="secno">2.2 </span> Attributes and Values </a></li><li class="tocline"><a href="#times" class="tocxref"><span class="secno">2.3 </span> Times </a></li><li class="tocline"><a href="#formulas" class="tocxref"><span class="secno">2.4 </span>Atomic Formulas</a></li><li class="tocline"><a href="#first-order-formulas" class="tocxref"><span class="secno">2.5 </span>First-Order Formulas</a></li></ul></li><li class="tocline"><a href="#structures" class="tocxref"><span class="secno">3. </span> Structures and Interpretations </a><ul class="toc"><li class="tocline"><a href="#things-1" class="tocxref"><span class="secno">3.1 </span> Things </a></li><li class="tocline"><a href="#objects-1" class="tocxref"><span class="secno">3.2 </span> Objects </a><ul class="toc"><li class="tocline"><a href="#entities-1" class="tocxref"><span class="secno">3.2.1 </span> Entities </a><ul class="toc"><li class="tocline"><a href="#plans-1" class="tocxref"><span class="secno">3.2.1.1 </span> Plans </a></li><li class="tocline"><a href="#collections-1" class="tocxref"><span class="secno">3.2.1.2 </span>Collections</a></li></ul></li><li class="tocline"><a href="#activities-1" class="tocxref"><span class="secno">3.2.2 </span> Activities </a></li><li class="tocline"><a href="#agents-1" class="tocxref"><span class="secno">3.2.3 </span> Agents </a></li><li class="tocline"><a href="#influences-1" class="tocxref"><span class="secno">3.2.4 </span> Influences </a><ul class="toc"><li class="tocline"><a href="#events-1" class="tocxref"><span class="secno">3.2.4.1 </span> Events </a></li><li class="tocline"><a href="#associations-1" class="tocxref"><span class="secno">3.2.4.2 </span> Associations </a></li><li class="tocline"><a href="#attributions-1" class="tocxref"><span class="secno">3.2.4.3 </span> Attributions </a></li><li class="tocline"><a href="#communications-1" class="tocxref"><span class="secno">3.2.4.4 </span>Communications</a></li><li class="tocline"><a href="#delegations-1" class="tocxref"><span class="secno">3.2.4.5 </span>Delegations</a></li><li class="tocline"><a href="#derivations-1" class="tocxref"><span class="secno">3.2.4.6 </span> Derivations </a></li></ul></li></ul></li><li class="tocline"><a href="#additional-axioms" class="tocxref"><span class="secno">3.3 </span>Additional axioms</a></li><li class="tocline"><a href="#putting-it-all-together" class="tocxref"><span class="secno">3.4 </span> Putting it all together </a></li><li class="tocline"><a href="#interpretations" class="tocxref"><span class="secno">3.5 </span> Interpretations </a></li></ul></li><li class="tocline"><a href="#semantics" class="tocxref"><span class="secno">4. </span> Semantics </a><ul class="toc"><li class="tocline"><a href="#satisfaction" class="tocxref"><span class="secno">4.1 </span> Satisfaction </a></li><li class="tocline"><a href="#attribute-matching" class="tocxref"><span class="secno">4.2 </span> Attribute matching </a></li><li class="tocline"><a href="#semantics-of-element-formulas" class="tocxref"><span class="secno">4.3 </span> Semantics of Element Formulas </a><ul class="toc"><li class="tocline"><a href="#entity" class="tocxref"><span class="secno">4.3.1 </span> Entity </a></li><li class="tocline"><a href="#activity" class="tocxref"><span class="secno">4.3.2 </span> Activity </a></li><li class="tocline"><a href="#agent" class="tocxref"><span class="secno">4.3.3 </span> Agent </a></li></ul></li><li class="tocline"><a href="#semantics-of-relations" class="tocxref"><span class="secno">4.4 </span> Semantics of Relations </a><ul class="toc"><li class="tocline"><a href="#generation" class="tocxref"><span class="secno">4.4.1 </span> Generation </a></li><li class="tocline"><a href="#use" class="tocxref"><span class="secno">4.4.2 </span> Use </a></li><li class="tocline"><a href="#invalidation" class="tocxref"><span class="secno">4.4.3 </span> Invalidation </a></li><li class="tocline"><a href="#association" class="tocxref"><span class="secno">4.4.4 </span> Association </a></li><li class="tocline"><a href="#start" class="tocxref"><span class="secno">4.4.5 </span> Start </a></li><li class="tocline"><a href="#end" class="tocxref"><span class="secno">4.4.6 </span> End </a></li><li class="tocline"><a href="#attribution" class="tocxref"><span class="secno">4.4.7 </span> Attribution </a></li><li class="tocline"><a href="#communication" class="tocxref"><span class="secno">4.4.8 </span>Communication</a></li><li class="tocline"><a href="#delegation" class="tocxref"><span class="secno">4.4.9 </span> Delegation </a></li><li class="tocline"><a href="#derivation" class="tocxref"><span class="secno">4.4.10 </span> Derivation </a><ul class="toc"><li class="tocline"><a href="#precise" class="tocxref"><span class="secno">4.4.10.1 </span> Precise </a></li><li class="tocline"><a href="#imprecise" class="tocxref"><span class="secno">4.4.10.2 </span> Imprecise </a></li></ul></li><li class="tocline"><a href="#influence" class="tocxref"><span class="secno">4.4.11 </span>Influence</a></li><li class="tocline"><a href="#specialization" class="tocxref"><span class="secno">4.4.12 </span> Specialization </a></li><li class="tocline"><a href="#alternate" class="tocxref"><span class="secno">4.4.13 </span> Alternate </a></li><li class="tocline"><a href="#membership" class="tocxref"><span class="secno">4.4.14 </span> Membership </a></li></ul></li><li class="tocline"><a href="#semantics-of-auxiliary-formulas" class="tocxref"><span class="secno">4.5 </span>Semantics of Auxiliary Formulas</a><ul class="toc"><li class="tocline"><a href="#precedes-and-strictly-precedes" class="tocxref"><span class="secno">4.5.1 </span>Precedes and Strictly Precedes</a></li><li class="tocline"><a href="#notnull" class="tocxref"><span class="secno">4.5.2 </span>notNull</a></li><li class="tocline"><a href="#typeof" class="tocxref"><span class="secno">4.5.3 </span>typeOf</a></li></ul></li></ul></li><li class="tocline"><a href="#theory" class="tocxref"><span class="secno">5. </span> Inferences and Constraints </a><ul class="toc"><li class="tocline"><a href="#inferences" class="tocxref"><span class="secno">5.1 </span>Inferences</a></li><li class="tocline"><a href="#constraints" class="tocxref"><span class="secno">5.2 </span>Constraints</a><ul class="toc"><li class="tocline"><a href="#uniqueness-constraints" class="tocxref"><span class="secno">5.2.1 </span>Uniqueness constraints</a></li><li class="tocline"><a href="#ordering-constraints" class="tocxref"><span class="secno">5.2.2 </span>Ordering constraints</a></li><li class="tocline"><a href="#typing-constraints" class="tocxref"><span class="secno">5.2.3 </span>Typing constraints</a></li><li class="tocline"><a href="#impossibility-constraints" class="tocxref"><span class="secno">5.2.4 </span>Impossibility constraints</a></li></ul></li></ul></li><li class="tocline"><a href="#soundness-completeness" class="tocxref"><span class="secno">6. </span>Soundness and Completeness</a><ul class="toc"><li class="tocline"><a href="#soundness" class="tocxref"><span class="secno">6.1 </span>Soundness</a></li><li class="tocline"><a href="#completeness" class="tocxref"><span class="secno">6.2 </span>Weak Completeness</a><ul class="toc"><li class="tocline"><a href="#sets" class="tocxref"><span class="secno">6.2.1 </span>Sets</a></li><li class="tocline"><a href="#functions" class="tocxref"><span class="secno">6.2.2 </span>Functions</a></li><li class="tocline"><a href="#relations" class="tocxref"><span class="secno">6.2.3 </span>Relations</a></li><li class="tocline"><a href="#axioms-1" class="tocxref"><span class="secno">6.2.4 </span>Axioms</a></li><li class="tocline"><a href="#main-results" class="tocxref"><span class="secno">6.2.5 </span>Main results</a></li></ul></li></ul></li><li class="tocline"><a href="#acknowledgements" class="tocxref"><span class="secno">A. </span>Acknowledgements</a></li><li class="tocline"><a href="#references" class="tocxref"><span class="secno">B. </span>References</a><ul class="toc"><li class="tocline"><a href="#informative-references" class="tocxref"><span class="secno">B.1 </span>Informative references</a></li></ul></li></ul></section>
+</section><section id="toc"><h2 class="introductory">Table of Contents</h2><ul class="toc"><li class="tocline"><a href="#introduction" class="tocxref"><span class="secno">1. </span>Introduction</a><ul class="toc"><li class="tocline"><a href="#purpose" class="tocxref"><span class="secno">1.1 </span>Purpose of this document</a></li><li class="tocline"><a href="#structure-of-this-document" class="tocxref"><span class="secno">1.2 </span>Structure of this document</a></li><li class="tocline"><a href="#audience" class="tocxref"><span class="secno">1.3 </span> Audience </a></li></ul></li><li class="tocline"><a href="#basics" class="tocxref"><span class="secno">2. </span> Basics </a><ul class="toc"><li class="tocline"><a href="#identifiers" class="tocxref"><span class="secno">2.1 </span> Identifiers </a></li><li class="tocline"><a href="#attributes-and-values" class="tocxref"><span class="secno">2.2 </span> Attributes and Values </a></li><li class="tocline"><a href="#times" class="tocxref"><span class="secno">2.3 </span> Times </a></li><li class="tocline"><a href="#formulas" class="tocxref"><span class="secno">2.4 </span>Atomic Formulas</a></li><li class="tocline"><a href="#first-order-formulas" class="tocxref"><span class="secno">2.5 </span>First-Order Formulas</a></li></ul></li><li class="tocline"><a href="#structures" class="tocxref"><span class="secno">3. </span> Structures and Interpretations </a></li><li class="tocline"><a href="#objects-1" class="tocxref"><span class="secno">4. </span> Objects </a><ul class="toc"><li class="tocline"><a href="#entities-1" class="tocxref"><span class="secno">4.1 </span> Entities </a><ul class="toc"><li class="tocline"><a href="#plans-1" class="tocxref"><span class="secno">4.1.1 </span> Plans </a></li><li class="tocline"><a href="#collections-1" class="tocxref"><span class="secno">4.1.2 </span>Collections</a></li></ul></li><li class="tocline"><a href="#activities-1" class="tocxref"><span class="secno">4.2 </span> Activities </a></li><li class="tocline"><a href="#agents-1" class="tocxref"><span class="secno">4.3 </span> Agents </a></li><li class="tocline"><a href="#influences-1" class="tocxref"><span class="secno">4.4 </span> Influences </a><ul class="toc"><li class="tocline"><a href="#events-1" class="tocxref"><span class="secno">4.4.1 </span> Events </a></li><li class="tocline"><a href="#associations-1" class="tocxref"><span class="secno">4.4.2 </span> Associations </a></li><li class="tocline"><a href="#attributions-1" class="tocxref"><span class="secno">4.4.3 </span> Attributions </a></li><li class="tocline"><a href="#communications-1" class="tocxref"><span class="secno">4.4.4 </span>Communications</a></li><li class="tocline"><a href="#delegations-1" class="tocxref"><span class="secno">4.4.5 </span>Delegations</a></li><li class="tocline"><a href="#derivations-1" class="tocxref"><span class="secno">4.4.6 </span> Derivations </a></li></ul></li></ul></li><li class="tocline"><a href="#additional-axioms" class="tocxref"><span class="secno">5. </span>Additional axioms</a></li><li class="tocline"><a href="#putting-it-all-together" class="tocxref"><span class="secno">6. </span> Putting it all together </a></li><li class="tocline"><a href="#interpretations" class="tocxref"><span class="secno">7. </span> Interpretations </a></li><li class="tocline"><a href="#semantics" class="tocxref"><span class="secno">8. </span> Semantics </a><ul class="toc"><li class="tocline"><a href="#satisfaction" class="tocxref"><span class="secno">8.1 </span> Satisfaction </a></li><li class="tocline"><a href="#attribute-matching" class="tocxref"><span class="secno">8.2 </span> Attribute matching </a></li><li class="tocline"><a href="#semantics-of-element-formulas" class="tocxref"><span class="secno">8.3 </span> Semantics of Element Formulas </a><ul class="toc"><li class="tocline"><a href="#entity" class="tocxref"><span class="secno">8.3.1 </span> Entity </a></li><li class="tocline"><a href="#activity" class="tocxref"><span class="secno">8.3.2 </span> Activity </a></li><li class="tocline"><a href="#agent" class="tocxref"><span class="secno">8.3.3 </span> Agent </a></li></ul></li><li class="tocline"><a href="#semantics-of-relations" class="tocxref"><span class="secno">8.4 </span> Semantics of Relations </a><ul class="toc"><li class="tocline"><a href="#generation" class="tocxref"><span class="secno">8.4.1 </span> Generation </a></li><li class="tocline"><a href="#use" class="tocxref"><span class="secno">8.4.2 </span> Use </a></li><li class="tocline"><a href="#invalidation" class="tocxref"><span class="secno">8.4.3 </span> Invalidation </a></li><li class="tocline"><a href="#association" class="tocxref"><span class="secno">8.4.4 </span> Association </a></li><li class="tocline"><a href="#start" class="tocxref"><span class="secno">8.4.5 </span> Start </a></li><li class="tocline"><a href="#end" class="tocxref"><span class="secno">8.4.6 </span> End </a></li><li class="tocline"><a href="#attribution" class="tocxref"><span class="secno">8.4.7 </span> Attribution </a></li><li class="tocline"><a href="#communication" class="tocxref"><span class="secno">8.4.8 </span>Communication</a></li><li class="tocline"><a href="#delegation" class="tocxref"><span class="secno">8.4.9 </span> Delegation </a></li><li class="tocline"><a href="#derivation" class="tocxref"><span class="secno">8.4.10 </span> Derivation </a><ul class="toc"><li class="tocline"><a href="#precise" class="tocxref"><span class="secno">8.4.10.1 </span> Precise </a></li><li class="tocline"><a href="#imprecise" class="tocxref"><span class="secno">8.4.10.2 </span> Imprecise </a></li></ul></li><li class="tocline"><a href="#influence" class="tocxref"><span class="secno">8.4.11 </span>Influence</a></li><li class="tocline"><a href="#specialization" class="tocxref"><span class="secno">8.4.12 </span> Specialization </a></li><li class="tocline"><a href="#alternate" class="tocxref"><span class="secno">8.4.13 </span> Alternate </a></li><li class="tocline"><a href="#membership" class="tocxref"><span class="secno">8.4.14 </span> Membership </a></li></ul></li><li class="tocline"><a href="#semantics-of-auxiliary-formulas" class="tocxref"><span class="secno">8.5 </span>Semantics of Auxiliary Formulas</a><ul class="toc"><li class="tocline"><a href="#precedes-and-strictly-precedes" class="tocxref"><span class="secno">8.5.1 </span>Precedes and Strictly Precedes</a></li><li class="tocline"><a href="#notnull" class="tocxref"><span class="secno">8.5.2 </span>notNull</a></li><li class="tocline"><a href="#typeof" class="tocxref"><span class="secno">8.5.3 </span>typeOf</a></li></ul></li></ul></li><li class="tocline"><a href="#theory" class="tocxref"><span class="secno">9. </span> Inferences and Constraints </a><ul class="toc"><li class="tocline"><a href="#inferences" class="tocxref"><span class="secno">9.1 </span>Inferences</a></li><li class="tocline"><a href="#constraints" class="tocxref"><span class="secno">9.2 </span>Constraints</a><ul class="toc"><li class="tocline"><a href="#uniqueness-constraints" class="tocxref"><span class="secno">9.2.1 </span>Uniqueness constraints</a></li><li class="tocline"><a href="#ordering-constraints" class="tocxref"><span class="secno">9.2.2 </span>Ordering constraints</a></li><li class="tocline"><a href="#typing-constraints" class="tocxref"><span class="secno">9.2.3 </span>Typing constraints</a></li><li class="tocline"><a href="#impossibility-constraints" class="tocxref"><span class="secno">9.2.4 </span>Impossibility constraints</a></li></ul></li></ul></li><li class="tocline"><a href="#soundness-completeness" class="tocxref"><span class="secno">10. </span>Soundness and Completeness</a><ul class="toc"><li class="tocline"><a href="#soundness" class="tocxref"><span class="secno">10.1 </span>Soundness</a></li><li class="tocline"><a href="#completeness" class="tocxref"><span class="secno">10.2 </span>Weak Completeness</a><ul class="toc"><li class="tocline"><a href="#sets" class="tocxref"><span class="secno">10.2.1 </span>Sets</a></li><li class="tocline"><a href="#functions" class="tocxref"><span class="secno">10.2.2 </span>Functions</a></li><li class="tocline"><a href="#relations" class="tocxref"><span class="secno">10.2.3 </span>Relations</a></li><li class="tocline"><a href="#axioms-1" class="tocxref"><span class="secno">10.2.4 </span>Axioms</a></li><li class="tocline"><a href="#main-results" class="tocxref"><span class="secno">10.2.5 </span>Main results</a></li></ul></li></ul></li><li class="tocline"><a href="#acknowledgements" class="tocxref"><span class="secno">A. </span>Acknowledgements</a></li><li class="tocline"><a href="#references" class="tocxref"><span class="secno">B. </span>References</a><ul class="toc"><li class="tocline"><a href="#informative-references" class="tocxref"><span class="secno">B.1 </span>Informative references</a></li></ul></li></ul></section>
 
 
 
@@ -1072,7 +1033,7 @@
 [<cite><a class="bibref" href="#bib-PROV-N">PROV-N</a></cite>] notation.  In particular it assumes familiarity with the concepts
   from logic, and the relationship between PROV statements and
   instances and first-order formulas and theories, respectively,
-  presented in <a href="http://www.w3.org/TR/2013/PR-prov-constraints-20130312/#overview">Section 2.5</a> of PROV-CONSTRAINTS.
+  presented in <a href="http://www.w3.org/TR/2013/REC-prov-constraints-20130430/#overview">Section 2.5</a> of PROV-CONSTRAINTS.
 </p>
 
   <p>This document may be useful to users of PROV who have a formal
@@ -1312,113 +1273,119 @@
 structure <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-32-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>W</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-32">W</script> are given in the rest of the section in
 <em>components</em>, highlighted in boxes.
 
-</p><div class="note"><div class="note-title"><span>Note</span></div><div class=""><p>TODO: Introduce Events</p></div></div>
-<section id="things-1">
-
-<h3><span class="secno">3.1 </span> Things </h3> 
-
-<p><em>Things</em>  is a set of things in the situation being modeled.  Each thing has a lifetime during which it exists and attributes whose values can change over time.
+
+
+</p><h2 id="things-1"> Things </h2> 
+
+<p><em>Things</em>  is a set of things in the situation being modeled.
+Each thing has an associates set of <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-33-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mi>v</mi><mi>e</mi><mi>n</mi><mi>t</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-33">Events</script> and attributes whose
+values can change over time.  Different kinds of <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-34-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mi>v</mi><mi>e</mi><mi>n</mi><mi>t</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-34">Events</script> are specified further below.
 </p>
-<p>To model this, a structure <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-33-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>W</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-33">W</script> includes:
+<p>To model this, a structure <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-35-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>W</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-35">W</script> includes:
 </p>
 <div class="component" id="things" data-count="1" data-title="Component 1 (things)"><div class="ruleTitle"><a class="internalDFN" href="#things">Component 1 (things)</a></div><ol>
-  <li> a set <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-34-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mi>h</mi><mi>i</mi><mi>n</mi><mi>g</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-34">Things</script> of things</li>
-  <li> a function <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-35-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>l</mi><mi>i</mi><mi>f</mi><mi>e</mi><mi>t</mi><mi>i</mi><mi>m</mi><mi>e</mi><mo stretchy="false">:</mo><mi>T</mi><mi>h</mi><mi>i</mi><mi>n</mi><mi>g</mi><mi>s</mi><mo stretchy="false">→</mo><mi>P</mi><mo stretchy="false">(</mo><mi>T</mi><mi>i</mi><mi>m</mi><mi>e</mi><mi>s</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-35">lifetime : Things \to P(Times)</script> from things to
-  sets of time instants.</li>
-  <li>a function <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-36-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mi>a</mi><mi>l</mi><mi>u</mi><mi>e</mi><mo stretchy="false">:</mo><mi>T</mi><mi>h</mi><mi>i</mi><mi>n</mi><mi>g</mi><mi>s</mi><mo stretchy="false">×</mo><mi>A</mi><mi>t</mi><mi>t</mi><mi>r</mi><mi>i</mi><mi>b</mi><mi>u</mi><mi>t</mi><mi>e</mi><mi>s</mi><mo stretchy="false">×</mo><mi>T</mi><mi>i</mi><mi>m</mi><mi>e</mi><mi>s</mi><mo stretchy="false">→</mo><mi>P</mi><mo stretchy="false">(</mo><mi>V</mi><mi>a</mi><mi>l</mi><mi>u</mi><mi>e</mi><mi>s</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-36">value : Things \times Attributes \times Times \to P(Values)</script>
+  <li> a set <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-36-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mi>h</mi><mi>i</mi><mi>n</mi><mi>g</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-36">Things</script> of things</li>
+  <li> a set <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-37-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mi>v</mi><mi>e</mi><mi>n</mi><mi>t</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-37">Events</script> of events</li>
+  <li> a function <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-38-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi><mi>v</mi><mi>e</mi><mi>n</mi><mi>t</mi><mi>s</mi><mo stretchy="false">:</mo><mi>T</mi><mi>h</mi><mi>i</mi><mi>n</mi><mi>g</mi><mi>s</mi><mo stretchy="false">→</mo><mi>P</mi><mo stretchy="false">(</mo><mi>E</mi><mi>v</mi><mi>e</mi><mi>n</mi><mi>t</mi><mi>s</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-38">events : Things \to P(Events)</script> from things to
+  sets of events.</li>
+  <li>a function <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-39-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mi>a</mi><mi>l</mi><mi>u</mi><mi>e</mi><mo stretchy="false">:</mo><mi>T</mi><mi>h</mi><mi>i</mi><mi>n</mi><mi>g</mi><mi>s</mi><mo stretchy="false">×</mo><mi>A</mi><mi>t</mi><mi>t</mi><mi>r</mi><mi>i</mi><mi>b</mi><mi>u</mi><mi>t</mi><mi>e</mi><mi>s</mi><mo stretchy="false">×</mo><mi>E</mi><mi>v</mi><mi>e</mi><mi>n</mi><mi>t</mi><mi>s</mi><mo stretchy="false">→</mo><mi>P</mi><mo stretchy="false">(</mo><mi>V</mi><mi>a</mi><mi>l</mi><mi>u</mi><mi>e</mi><mi>s</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-39">value : Things \times Attributes \times Events \to
+  P(Values)</script> giving the possible values of each attribute of a
+  <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-40-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mi>h</mi><mi>i</mi><mi>n</mi><mi>g</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-40">Thing</script> at the instant of a given event.
 </li>
-</ol>
+<li>Attributes are only defined during the events of a thing, that
+is, <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-41-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mi>a</mi><mi>l</mi><mi>u</mi><mi>e</mi><mo stretchy="false">(</mo><mi>T</mi><mo stretchy="false">,</mo><mi>a</mi><mo stretchy="false">,</mo><mi>e</mi><mi>v</mi><mi>t</mi><mo stretchy="false">)</mo><mo stretchy="false">≠</mo><mi mathvariant="normal">∅</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-41">value(T,a,evt) \neq \emptyset</script> implies <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-42-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi><mi>v</mi><mi>t</mi><mo stretchy="false">∈</mo><mi>e</mi><mi>v</mi><mi>e</mi><mi>n</mi><mi>t</mi><mi>s</mi><mo stretchy="false">(</mo><mi>T</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-42">evt \in events(T)</script>.
+</li></ol>
 </div>
 <p>
-The range of <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-37-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mi>a</mi><mi>l</mi><mi>u</mi><mi>e</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-37">value</script> is the set <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-38-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi><mo stretchy="false">(</mo><mi>V</mi><mi>a</mi><mi>l</mi><mi>u</mi><mi>e</mi><mi>s</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-38">P(Values)</script>, indicating that <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-39-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mi>a</mi><mi>l</mi><mi>u</mi><mi>e</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-39">value</script>
-is essentially a multi-valued function that returns a set of values (possibly empty).    When <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-40-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mi>a</mi><mi>l</mi><mi>u</mi><mi>e</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">,</mo><mi>a</mi><mo stretchy="false">,</mo><mi>t</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mi mathvariant="normal">∅</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-40">value(x,a,t) =
-\emptyset</script>, we say that attribute <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-41-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-41">a</script> is undefined for <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-42-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-42">x</script> at time <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-43-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-43">t</script>.</p>
+The range of <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-43-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mi>a</mi><mi>l</mi><mi>u</mi><mi>e</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-43">value</script> is the set <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-44-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi><mo stretchy="false">(</mo><mi>V</mi><mi>a</mi><mi>l</mi><mi>u</mi><mi>e</mi><mi>s</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-44">P(Values)</script>, indicating that <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-45-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mi>a</mi><mi>l</mi><mi>u</mi><mi>e</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-45">value</script>
+is essentially a multi-valued function that returns a set of values (possibly empty).    When <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-46-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mi>a</mi><mi>l</mi><mi>u</mi><mi>e</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">,</mo><mi>a</mi><mo stretchy="false">,</mo><mi>e</mi><mi>v</mi><mi>t</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mi mathvariant="normal">∅</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-46">value(x,a,evt) =
+\emptyset</script>, we say that attribute <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-47-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-47">a</script> is undefined for <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-48-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-48">x</script> at event <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-49-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi><mi>v</mi><mi>t</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-49">evt</script>.</p>
 
 <p>Note that this description does not say what the structure of a
-<span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-44-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mi>h</mi><mi>i</mi><mi>n</mi><mi>g</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-44">Thing</script> is, only how it may be described in terms of its lifetime
+<span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-50-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mi>h</mi><mi>i</mi><mi>n</mi><mi>g</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-50">Thing</script> is, only how it may be described in terms of its events
 and attribute values.  A thing could be a record of fixed
 attribute values; it could be a bear; it could be the Royal Society;
-it could be a transcendental number like <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-45-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="italic">π</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-45">\pi</script>.  All that matters from
-our point of view is that we know how to map the <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-46-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mi>h</mi><mi>i</mi><mi>n</mi><mi>g</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-46">Thing</script> to its lifetime and attribute mapping.
+it could be a transcendental number like <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-51-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="italic">π</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-51">\pi</script>.  All that matters from
+our point of view is that we know how to map the <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-52-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mi>h</mi><mi>i</mi><mi>n</mi><mi>g</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-52">Thing</script> to its events and attribute mapping.
 </p>
 
 
 <p>The identity of a Thing is not observable through its attributes or
-lifetime, so it is possible for two different <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-47-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mi>h</mi><mi>i</mi><mi>n</mi><mi>g</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-47">Things</script> to be indistinguishable by their
-attribute values and lifetime.  That is, if the set of <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-48-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mi>h</mi><mi>i</mi><mi>n</mi><mi>g</mi><mi>s</mi><mo stretchy="false">=</mo><mo fence="false" stretchy="false">{</mo><msub><mi>T</mi><mn>0</mn></msub><mo stretchy="false">,</mo><msub><mi>T</mi><mn>1</mn></msub><mo fence="false" stretchy="false">}</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-48">Things = \{T_0,T_1\}</script> and the attributes are
-specified as <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-49-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mi>a</mi><mi>l</mi><mi>u</mi><mi>e</mi><mo stretchy="false">(</mo><msub><mi>T</mi><mn>0</mn></msub><mo stretchy="false">,</mo><mi>a</mi><mo stretchy="false">,</mo><mi>t</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mi>v</mi><mi>a</mi><mi>l</mi><mi>u</mi><mi>e</mi><mo stretchy="false">(</mo><msub><mi>T</mi><mn>1</mn></msub><mo stretchy="false">,</mo><mi>a</mi><mo stretchy="false">,</mo><mi>t</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-49">value(T_0,a,t) = value(T_1,a,t)</script> for each <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-50-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo stretchy="false">∈</mo><mi>T</mi><mi>i</mi><mi>m</mi><mi>e</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-50">t\in
-Times</script> and <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-51-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo stretchy="false">∈</mo><mi>A</mi><mi>t</mi><mi>t</mi><mi>r</mi><mi>i</mi><mi>b</mi><mi>u</mi><mi>t</mi><mi>e</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-51">a \in Attributes</script>, this does not imply that <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-52-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>T</mi><mn>0</mn></msub><mo stretchy="false">=</mo><msub><mi>T</mi><mn>1</mn></msub></math></span></span></span><script type="math/tex" id="MathJax-Element-52">T_0 = T_1</script>.
+events, so it is possible for two different <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-53-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mi>h</mi><mi>i</mi><mi>n</mi><mi>g</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-53">Things</script> to be indistinguishable by their
+attribute values and events.  That is, if the set of <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-54-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mi>h</mi><mi>i</mi><mi>n</mi><mi>g</mi><mi>s</mi><mo stretchy="false">=</mo><mo fence="false" stretchy="false">{</mo><msub><mi>T</mi><mn>0</mn></msub><mo stretchy="false">,</mo><msub><mi>T</mi><mn>1</mn></msub><mo fence="false" stretchy="false">}</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-54">Things = \{T_0,T_1\}</script> and the attributes are
+specified as <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-55-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mi>a</mi><mi>l</mi><mi>u</mi><mi>e</mi><mo stretchy="false">(</mo><msub><mi>T</mi><mn>0</mn></msub><mo stretchy="false">,</mo><mi>a</mi><mo stretchy="false">,</mo><mi>e</mi><mi>v</mi><mi>t</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mi>v</mi><mi>a</mi><mi>l</mi><mi>u</mi><mi>e</mi><mo stretchy="false">(</mo><msub><mi>T</mi><mn>1</mn></msub><mo stretchy="false">,</mo><mi>a</mi><mo stretchy="false">,</mo><mi>e</mi><mi>v</mi><mi>t</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-55">value(T_0,a,evt) = value(T_1,a,evt)</script> for each <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-56-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi><mi>v</mi><mi>t</mi><mo stretchy="false">∈</mo><mi>E</mi><mi>v</mi><mi>e</mi><mi>n</mi><mi>t</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-56">evt\in
+Events</script> and <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-57-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo stretchy="false">∈</mo><mi>A</mi><mi>t</mi><mi>t</mi><mi>r</mi><mi>i</mi><mi>b</mi><mi>u</mi><mi>t</mi><mi>e</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-57">a \in Attributes</script>, this does not imply that <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-58-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>T</mi><mn>0</mn></msub><mo stretchy="false">=</mo><msub><mi>T</mi><mn>1</mn></msub></math></span></span></span><script type="math/tex" id="MathJax-Element-58">T_0 = T_1</script>.
 </p>
 
 
 </section>
 
 <section id="objects-1">
-<h3><span class="secno">3.2 </span> Objects </h3>
-
-
-<p><span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-53-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mi>h</mi><mi>i</mi><mi>n</mi><mi>g</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-53">Things</script> are things in the world that have attributes that
-  can change over time.  <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-54-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mi>h</mi><mi>i</mi><mi>n</mi><mi>g</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-54">Things</script> may not have distinguishing features
+<!--OddPage--><h2><span class="secno">4. </span> Objects </h2>
+
+
+<p><span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-59-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mi>h</mi><mi>i</mi><mi>n</mi><mi>g</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-59">Things</script> are things in the world that have attributes that
+  can change over time.  <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-60-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mi>h</mi><mi>i</mi><mi>n</mi><mi>g</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-60">Things</script> may not have distinguishing features
   that are readily observable and permanent.  In PROV, we do not talk
-  explicitly about <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-55-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mi>h</mi><mi>i</mi><mi>n</mi><mi>g</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-55">Things</script>, but instead we talk about various objects
+  explicitly about <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-61-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mi>h</mi><mi>i</mi><mi>n</mi><mi>g</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-61">Things</script>, but instead we talk about various objects
   that have discrete, fixed features,  and relationships among these
-  objects. Some objects, called <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-56-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mi>n</mi><mi>t</mi><mi>i</mi><mi>t</mi><mi>i</mi><mi>e</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-56">Entities</script>, are associated with
-  <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-57-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mi>h</mi><mi>i</mi><mi>n</mi><mi>g</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-57">Things</script>, and their fixed attributes need to match those of the
-  associated <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-58-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mi>h</mi><mi>i</mi><mi>n</mi><mi>g</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-58">Thing</script> during their common lifetime.  Others correspond
+  objects. Some objects, called <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-62-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mi>n</mi><mi>t</mi><mi>i</mi><mi>t</mi><mi>i</mi><mi>e</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-62">Entities</script>, are associated with
+  <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-63-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mi>h</mi><mi>i</mi><mi>n</mi><mi>g</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-63">Things</script>, and their fixed attributes need to match those of the
+  associated <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-64-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mi>h</mi><mi>i</mi><mi>n</mi><mi>g</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-64">Thing</script> during their common events.  Others correspond
   to agents, activities, or identifiable interactions among them.</p>  
 
-<p>In this section, we detail the different subsets of <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-59-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>O</mi><mi>b</mi><mi>j</mi><mi>e</mi><mi>c</mi><mi>t</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-59">Objects</script>, and
+<p>In this section, we detail the different subsets of <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-65-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>O</mi><mi>b</mi><mi>j</mi><mi>e</mi><mi>c</mi><mi>t</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-65">Objects</script>, and
 give disjointness constraints and associated functions.  Generally, these constraints are necessary to validate
 disjointness constraints from PROV-CONSTRAINTS [<cite><a class="bibref" href="#bib-PROV-CONSTRAINTS">PROV-CONSTRAINTS</a></cite>].
 </p>
 
 <p>
-An <em>Object</em> is described by a time interval and attributes with
+An <em>Object</em> is described by a set of events and attributes with
 fixed values.  Objects encompass entities, activities, agents, and
 interactions (i.e., usage, generation, and other events or influence relations).
 To model this, a structure includes:
 </p>
 
 <div class="component" id="objects" data-count="2" data-title="Component 2 (objects)"><div class="ruleTitle"><a class="internalDFN" href="#objects">Component 2 (objects)</a></div>
-  <ol><li> a set <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-60-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>O</mi><mi>b</mi><mi>j</mi><mi>e</mi><mi>c</mi><mi>t</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-60">Objects</script> 
-</li><li> a function <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-61-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>l</mi><mi>i</mi><mi>f</mi><mi>e</mi><mi>t</mi><mi>i</mi><mi>m</mi><mi>e</mi><mo stretchy="false">:</mo><mi>O</mi><mi>b</mi><mi>j</mi><mi>e</mi><mi>c</mi><mi>t</mi><mi>s</mi><mo stretchy="false">→</mo><mi>P</mi><mo stretchy="false">(</mo><mi>T</mi><mi>i</mi><mi>m</mi><mi>e</mi><mi>s</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-61">lifetime : Objects \to P(Times)</script> from objects to time intervals
-</li><li> a function <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-62-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mi>a</mi><mi>l</mi><mi>u</mi><mi>e</mi><mo stretchy="false">:</mo><mi>O</mi><mi>b</mi><mi>j</mi><mi>e</mi><mi>c</mi><mi>t</mi><mi>s</mi><mo stretchy="false">×</mo><mi>A</mi><mi>t</mi><mi>t</mi><mi>r</mi><mi>i</mi><mi>b</mi><mi>u</mi><mi>t</mi><mi>e</mi><mi>s</mi><mo stretchy="false">→</mo><mi>P</mi><mo stretchy="false">(</mo><mi>V</mi><mi>a</mi><mi>l</mi><mi>u</mi><mi>e</mi><mi>s</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-62">value : Objects \times Attributes \to P(Values)</script>
+  <ol><li> a set <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-66-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>O</mi><mi>b</mi><mi>j</mi><mi>e</mi><mi>c</mi><mi>t</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-66">Objects</script> 
+</li><li> a function <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-67-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi><mi>v</mi><mi>e</mi><mi>n</mi><mi>t</mi><mi>s</mi><mo stretchy="false">:</mo><mi>O</mi><mi>b</mi><mi>j</mi><mi>e</mi><mi>c</mi><mi>t</mi><mi>s</mi><mo stretchy="false">→</mo><mi>P</mi><mo stretchy="false">(</mo><mi>E</mi><mi>v</mi><mi>e</mi><mi>n</mi><mi>t</mi><mi>s</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-67">events : Objects \to P(Events)</script> from objects
+  to associated sets of events.
+</li><li> a function <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-68-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mi>a</mi><mi>l</mi><mi>u</mi><mi>e</mi><mo stretchy="false">:</mo><mi>O</mi><mi>b</mi><mi>j</mi><mi>e</mi><mi>c</mi><mi>t</mi><mi>s</mi><mo stretchy="false">×</mo><mi>A</mi><mi>t</mi><mi>t</mi><mi>r</mi><mi>i</mi><mi>b</mi><mi>u</mi><mi>t</mi><mi>e</mi><mi>s</mi><mo stretchy="false">→</mo><mi>P</mi><mo stretchy="false">(</mo><mi>V</mi><mi>a</mi><mi>l</mi><mi>u</mi><mi>e</mi><mi>s</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-68">value : Objects \times Attributes \to P(Values)</script>.
 </li></ol>
 </div>
 
-<p>Intuitively, <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-63-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>l</mi><mi>i</mi><mi>f</mi><mi>e</mi><mi>t</mi><mi>i</mi><mi>m</mi><mi>e</mi><mo stretchy="false">(</mo><mi>e</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-63">lifetime(e)</script> is the time interval during which object
-<span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-64-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-64">e</script> exists.  The set <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-65-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mi>a</mi><mi>l</mi><mi>u</mi><mi>e</mi><mo stretchy="false">(</mo><mi>e</mi><mo stretchy="false">,</mo><mi>a</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-65">value(e,a)</script> is the set of values of attribute <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-66-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-66">a</script> during the object's lifetime.
+<p>Intuitively, <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-69-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi><mi>v</mi><mi>e</mi><mi>n</mi><mi>t</mi><mi>s</mi><mo stretchy="false">(</mo><mi>e</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-69">events(e)</script> is the set of events in which <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-70-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-70">e</script> participated.  The set <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-71-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mi>a</mi><mi>l</mi><mi>u</mi><mi>e</mi><mo stretchy="false">(</mo><mi>e</mi><mo stretchy="false">,</mo><mi>a</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-71">value(e,a)</script> is the set of values of attribute <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-72-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-72">a</script> during the object's events.
 </p>
 
-<p>As with <em>Things</em>, the range of <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-67-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mi>a</mi><mi>l</mi><mi>u</mi><mi>e</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-67">value</script> is sets of values,
-making <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-68-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mi>a</mi><mi>l</mi><mi>u</mi><mi>e</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-68">value</script> effectively a multivalued function.  It is also
+<p>As with <em>Things</em>, the range of <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-73-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mi>a</mi><mi>l</mi><mi>u</mi><mi>e</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-73">value</script> is sets of values,
+making <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-74-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mi>a</mi><mi>l</mi><mi>u</mi><mi>e</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-74">value</script> effectively a multivalued function.  It is also
 possible to have two different objects that are indistinguishable by
 their attributes and time intervals.  Objects are not things, and the
-sets of <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-69-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>O</mi><mi>b</mi><mi>j</mi><mi>e</mi><mi>c</mi><mi>t</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-69">Objects</script> and <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-70-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mi>h</mi><mi>i</mi><mi>n</mi><mi>g</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-70">Things</script> are disjoint; however, certain objects,
+sets of <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-75-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>O</mi><mi>b</mi><mi>j</mi><mi>e</mi><mi>c</mi><mi>t</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-75">Objects</script> and <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-76-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mi>h</mi><mi>i</mi><mi>n</mi><mi>g</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-76">Things</script> are disjoint; however, certain objects,
 namely entities, are associated with things.
 </p>
 
 <div class="remark">
   <p>
-  Disjointness between <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-71-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>O</mi><mi>b</mi><mi>j</mi><mi>e</mi><mi>c</mi><mi>t</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-71">Objects</script> and <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-72-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mi>h</mi><mi>i</mi><mi>n</mi><mi>g</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-72">Things</script> is not necessary but is
+  Disjointness between <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-77-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>O</mi><mi>b</mi><mi>j</mi><mi>e</mi><mi>c</mi><mi>t</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-77">Objects</script> and <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-78-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mi>h</mi><mi>i</mi><mi>n</mi><mi>g</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-78">Things</script> is not necessary but is
   assumed in order to avoid confusion between the different categories
-  (time-varying <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-73-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mi>h</mi><mi>i</mi><mi>n</mi><mi>g</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-73">Things</script> vs fixed <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-74-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>O</mi><mi>b</mi><mi>j</mi><mi>e</mi><mi>c</mi><mi>t</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-74">Objects</script>).
+  (time-varying <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-79-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mi>h</mi><mi>i</mi><mi>n</mi><mi>g</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-79">Things</script> vs fixed <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-80-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>O</mi><mi>b</mi><mi>j</mi><mi>e</mi><mi>c</mi><mi>t</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-80">Objects</script>).
   </p>
   </div>
   
 <section id="entities-1">
-<h4><span class="secno">3.2.1 </span> Entities </h4>
+<h3><span class="secno">4.1 </span> Entities </h3>
 
 <p>An <em>entity</em> is a kind of object that fixes some aspects of a
   thing. We assume:</p>
 
 <div class="component" id="entities" data-count="3" data-title="Component 3 (entities)"><div class="ruleTitle"><a class="internalDFN" href="#entities">Component 3 (entities)</a></div>
-  <ol><li> a set <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-75-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mi>n</mi><mi>t</mi><mi>i</mi><mi>t</mi><mi>i</mi><mi>e</mi><mi>s</mi><mo stretchy="false">⊆</mo><mi>O</mi><mi>b</mi><mi>j</mi><mi>e</mi><mi>c</mi><mi>t</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-75">Entities \subseteq Objects</script> of entities, disjoint from <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-76-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>c</mi><mi>t</mi><mi>i</mi><mi>v</mi><mi>i</mi><mi>t</mi><mi>i</mi><mi>e</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-76">Activities</script> below.
-</li><li> a function <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-77-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mi>h</mi><mi>i</mi><mi>n</mi><mi>g</mi><mi>O</mi><mi>f</mi><mo stretchy="false">:</mo><mi>E</mi><mi>n</mi><mi>t</mi><mi>i</mi><mi>t</mi><mi>i</mi><mi>e</mi><mi>s</mi><mo stretchy="false">→</mo><mi>T</mi><mi>h</mi><mi>i</mi><mi>n</mi><mi>g</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-77">thingOf : Entities \to Things</script> that associates
-  each <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-78-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mi>n</mi><mi>t</mi><mi>i</mi><mi>t</mi><mi>y</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-78">Entity</script> <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-79-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-79">e</script> with a <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-80-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mi>h</mi><mi>i</mi><mi>n</mi><mi>g</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-80">Thing</script>, such that <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-81-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>l</mi><mi>i</mi><mi>f</mi><mi>e</mi><mi>t</mi><mi>i</mi><mi>m</mi><mi>e</mi><mo stretchy="false">(</mo><mi>e</mi><mo stretchy="false">)</mo><mo stretchy="false">⊆</mo><mi>l</mi><mi>i</mi><mi>f</mi><mi>e</mi><mi>t</mi><mi>i</mi><mi>m</mi><mi>e</mi><mo stretchy="false">(</mo><mi>t</mi><mi>h</mi><mi>i</mi><mi>n</mi><mi>g</mi><mi>O</mi><mi>f</mi><mo stretchy="false">(</mo><mi>e</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-81">lifetime(e) \subseteq
-  lifetime(thingOf(e))</script> and for each <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-82-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo stretchy="false">∈</mo><mi>l</mi><mi>i</mi><mi>f</mi><mi>e</mi><mi>t</mi><mi>i</mi><mi>m</mi><mi>e</mi><mo stretchy="false">(</mo><mi>e</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-82">t \in
-  lifetime(e)</script> and for each attribute <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-83-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-83">a</script> we have <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-84-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mi>a</mi><mi>l</mi><mi>u</mi><mi>e</mi><mo stretchy="false">(</mo><mi>e</mi><mo stretchy="false">,</mo><mi>a</mi><mo stretchy="false">)</mo><mo stretchy="false">⊆</mo><mi>v</mi><mi>a</mi><mi>l</mi><mi>u</mi><mi>e</mi><mo stretchy="false">(</mo><mi>t</mi><mi>h</mi><mi>i</mi><mi>n</mi><mi>g</mi><mi>O</mi><mi>f</mi><mo stretchy="false">(</mo><mi>e</mi><mo stretchy="false">)</mo><mo stretchy="false">,</mo><mi>a</mi><mo stretchy="false">,</mo><mi>t</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-84">value(e,a)
-  \subseteq value(thingOf(e),a,t)</script>
+  <ol><li> a set <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-81-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mi>n</mi><mi>t</mi><mi>i</mi><mi>t</mi><mi>i</mi><mi>e</mi><mi>s</mi><mo stretchy="false">⊆</mo><mi>O</mi><mi>b</mi><mi>j</mi><mi>e</mi><mi>c</mi><mi>t</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-81">Entities \subseteq Objects</script> of entities, disjoint from <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-82-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>c</mi><mi>t</mi><mi>i</mi><mi>v</mi><mi>i</mi><mi>t</mi><mi>i</mi><mi>e</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-82">Activities</script> below.
+</li><li> a function <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-83-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mi>h</mi><mi>i</mi><mi>n</mi><mi>g</mi><mi>O</mi><mi>f</mi><mo stretchy="false">:</mo><mi>E</mi><mi>n</mi><mi>t</mi><mi>i</mi><mi>t</mi><mi>i</mi><mi>e</mi><mi>s</mi><mo stretchy="false">→</mo><mi>T</mi><mi>h</mi><mi>i</mi><mi>n</mi><mi>g</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-83">thingOf : Entities \to Things</script> that associates
+  each <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-84-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mi>n</mi><mi>t</mi><mi>i</mi><mi>t</mi><mi>y</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-84">Entity</script> <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-85-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-85">e</script> with a <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-86-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mi>h</mi><mi>i</mi><mi>n</mi><mi>g</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-86">Thing</script>, such that <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-87-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi><mi>v</mi><mi>e</mi><mi>n</mi><mi>t</mi><mi>s</mi><mo stretchy="false">(</mo><mi>e</mi><mo stretchy="false">)</mo><mo stretchy="false">⊆</mo><mi>e</mi><mi>v</mi><mi>e</mi><mi>n</mi><mi>t</mi><mi>s</mi><mo stretchy="false">(</mo><mi>t</mi><mi>h</mi><mi>i</mi><mi>n</mi><mi>g</mi><mi>O</mi><mi>f</mi><mo stretchy="false">(</mo><mi>e</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-87">events(e) \subseteq
+  events(thingOf(e))</script> and for each <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-88-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi><mi>v</mi><mi>t</mi><mo stretchy="false">∈</mo><mi>e</mi><mi>v</mi><mi>e</mi><mi>n</mi><mi>t</mi><mi>s</mi><mo stretchy="false">(</mo><mi>e</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-88">evt \in
+  events(e)</script> and for each attribute <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-89-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-89">a</script> we have <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-90-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mi>a</mi><mi>l</mi><mi>u</mi><mi>e</mi><mo stretchy="false">(</mo><mi>e</mi><mo stretchy="false">,</mo><mi>a</mi><mo stretchy="false">)</mo><mo stretchy="false">⊆</mo><mi>v</mi><mi>a</mi><mi>l</mi><mi>u</mi><mi>e</mi><mo stretchy="false">(</mo><mi>t</mi><mi>h</mi><mi>i</mi><mi>n</mi><mi>g</mi><mi>O</mi><mi>f</mi><mo stretchy="false">(</mo><mi>e</mi><mo stretchy="false">)</mo><mo stretchy="false">,</mo><mi>a</mi><mo stretchy="false">,</mo><mi>e</mi><mi>v</mi><mi>t</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-90">value(e,a)
+  \subseteq value(thingOf(e),a,evt)</script>.  
 </li>
 <!--<li>a relation $SpecializationOf \subseteq Entities \times Entities$
   that is irreflexive and transitive.  Furthermore, if $(e_1,e_2) \in
@@ -1426,7 +1393,7 @@
 <ol><li>
   $thingOf(e_1) = thingOf(e_2)$
   </li>
-  <li>$lifetime(e_1) \subseteq lifetime(e_2)$</li>
+  <li>$events(e_1) \subseteq events(e_2)$</li>
   <li>For each attribute $attr$ we have $value(e_1,attr) \supseteq
   value(e_2,attr)$.</li>
   </ol></li>
@@ -1437,65 +1404,65 @@
 
 <div class="remark"><p> Although both entities and things can have
   undefined or multiple attribute values, their meaning is slightly
-  different: for a thing, <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-85-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mi>a</mi><mi>l</mi><mi>u</mi><mi>e</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">,</mo><mi>a</mi><mo stretchy="false">,</mo><mi>t</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mi mathvariant="normal">∅</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-85">value(x,a,t) = \emptyset</script> means that the
-  attribute <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-86-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-86">a</script> has no value at time <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-87-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-87">t</script>, whereas for an entity,
-  <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-88-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mi>a</mi><mi>l</mi><mi>u</mi><mi>e</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">,</mo><mi>a</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mi mathvariant="normal">∅</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-88">value(x,a) = \emptyset</script> only means that the thing associated to
-  entity <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-89-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-89">x</script> need not have a
-  fixed value for <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-90-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-90">a</script> during the lifetime of <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-91-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-91">x</script>.  This does not imply
-  that <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-92-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mi>a</mi><mi>l</mi><mi>u</mi><mi>e</mi><mo stretchy="false">(</mo><mi>t</mi><mi>h</mi><mi>i</mi><mi>n</mi><mi>g</mi><mi>O</mi><mi>f</mi><mo stretchy="false">(</mo><mi>e</mi><mo stretchy="false">)</mo><mo stretchy="false">,</mo><mi>a</mi><mo stretchy="false">,</mo><mi>t</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mi mathvariant="normal">∅</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-92">value(thingOf(e),a,t) = \emptyset</script> when <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-93-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo stretchy="false">∈</mo><mi>l</mi><mi>i</mi><mi>f</mi><mi>e</mi><mi>t</mi><mi>i</mi><mi>m</mi><mi>e</mi><mo stretchy="false">(</mo><mi>e</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-93">t \in lifetime(e)</script>.
+  different: for a thing, <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-91-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mi>a</mi><mi>l</mi><mi>u</mi><mi>e</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">,</mo><mi>a</mi><mo stretchy="false">,</mo><mi>e</mi><mi>v</mi><mi>t</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mi mathvariant="normal">∅</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-91">value(x,a,evt) = \emptyset</script> means that the
+  attribute <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-92-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-92">a</script> has no value at event <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-93-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi><mi>v</mi><mi>t</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-93">evt</script>, whereas for an entity,
+  <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-94-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mi>a</mi><mi>l</mi><mi>u</mi><mi>e</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">,</mo><mi>a</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mi mathvariant="normal">∅</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-94">value(x,a) = \emptyset</script> only means that the thing associated to
+  entity <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-95-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-95">x</script> need not have a
+  fixed value for <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-96-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-96">a</script> during the events of <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-97-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-97">x</script>.  This does not imply
+  that <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-98-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mi>a</mi><mi>l</mi><mi>u</mi><mi>e</mi><mo stretchy="false">(</mo><mi>t</mi><mi>h</mi><mi>i</mi><mi>n</mi><mi>g</mi><mi>O</mi><mi>f</mi><mo stretchy="false">(</mo><mi>e</mi><mo stretchy="false">)</mo><mo stretchy="false">,</mo><mi>a</mi><mo stretchy="false">,</mo><mi>e</mi><mi>v</mi><mi>t</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mi mathvariant="normal">∅</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-98">value(thingOf(e),a,evt) = \emptyset</script> when <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-99-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi><mi>v</mi><mi>t</mi><mo stretchy="false">∈</mo><mi>e</mi><mi>v</mi><mi>e</mi><mi>n</mi><mi>t</mi><mi>s</mi><mo stretchy="false">(</mo><mi>e</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-99">evt \in events(e)</script>.
   </p>
 
   <p>Furthermore, all of the attribute values of the entity must
-  be present in the associated thing throughout the lifetime of the
-  entity.  For example, suppose <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-94-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mi>a</mi><mi>l</mi><mi>u</mi><mi>e</mi><mo stretchy="false">(</mo><mi>t</mi><mi>h</mi><mi>i</mi><mi>n</mi><mi>g</mi><mi>O</mi><mi>f</mi><mo stretchy="false">(</mo><mi>e</mi><mo stretchy="false">)</mo><mo stretchy="false">,</mo><mi>a</mi><mo stretchy="false">,</mo><mi>t</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-94">value(thingOf(e),a,t)</script> is <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-95-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mo fence="false" stretchy="false">{</mo><mn>1</mn><mo fence="false" stretchy="false">}</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-95">\{1\}</script> at
-  some time in <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-96-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>l</mi><mi>i</mi><mi>f</mi><mi>e</mi><mi>t</mi><mi>i</mi><mi>m</mi><mi>e</mi><mo stretchy="false">(</mo><mi>e</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-96">lifetime(e)</script> and <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-97-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mi>a</mi><mi>l</mi><mi>u</mi><mi>e</mi><mo stretchy="false">(</mo><mi>t</mi><mi>h</mi><mi>i</mi><mi>n</mi><mi>g</mi><mi>O</mi><mi>f</mi><mo stretchy="false">(</mo><mi>e</mi><mo stretchy="false">)</mo><mo stretchy="false">,</mo><mi>a</mi><mo stretchy="false">,</mo><msup><mi>t</mi><mo>′</mo></msup><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo fence="false" stretchy="false">{</mo><mn>2</mn><mo fence="false" stretchy="false">}</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-97">value(thingOf(e),a,t') = \{2\}</script> at
-  some other time <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-98-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>t</mi><mo>′</mo></msup></math></span></span></span><script type="math/tex" id="MathJax-Element-98">t'</script>.  Then <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-99-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mi>a</mi><mi>l</mi><mi>u</mi><mi>e</mi><mo stretchy="false">(</mo><mi>e</mi><mo stretchy="false">,</mo><mi>a</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-99">value(e,a)</script> must be <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-100-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">∅</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-100">\emptyset</script> because
+  be present in the associated thing throughout the events of the
+  entity.  For example, suppose <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-100-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mi>a</mi><mi>l</mi><mi>u</mi><mi>e</mi><mo stretchy="false">(</mo><mi>t</mi><mi>h</mi><mi>i</mi><mi>n</mi><mi>g</mi><mi>O</mi><mi>f</mi><mo stretchy="false">(</mo><mi>e</mi><mo stretchy="false">)</mo><mo stretchy="false">,</mo><mi>a</mi><mo stretchy="false">,</mo><mi>e</mi><mi>v</mi><mi>t</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-100">value(thingOf(e),a,evt)</script> is <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-101-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mo fence="false" stretchy="false">{</mo><mn>1</mn><mo fence="false" stretchy="false">}</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-101">\{1\}</script> at
+  some event <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-102-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi><mi>v</mi><mi>t</mi><mo stretchy="false">∈</mo><mi>e</mi><mi>v</mi><mi>e</mi><mi>n</mi><mi>t</mi><mi>s</mi><mo stretchy="false">(</mo><mi>e</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-102"> evt \in events(e)</script> and <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-103-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mi>a</mi><mi>l</mi><mi>u</mi><mi>e</mi><mo stretchy="false">(</mo><mi>t</mi><mi>h</mi><mi>i</mi><mi>n</mi><mi>g</mi><mi>O</mi><mi>f</mi><mo stretchy="false">(</mo><mi>e</mi><mo stretchy="false">)</mo><mo stretchy="false">,</mo><mi>a</mi><mo stretchy="false">,</mo><mi>e</mi><mi>v</mi><msup><mi>t</mi><mo>′</mo></msup><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo fence="false" stretchy="false">{</mo><mn>2</mn><mo fence="false" stretchy="false">}</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-103">value(thingOf(e),a,evt') = \{2\}</script> at
+  some other event <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-104-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi><mi>v</mi><msup><mi>t</mi><mo>′</mo></msup></math></span></span></span><script type="math/tex" id="MathJax-Element-104">evt'</script>.  Then <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-105-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mi>a</mi><mi>l</mi><mi>u</mi><mi>e</mi><mo stretchy="false">(</mo><mi>e</mi><mo stretchy="false">,</mo><mi>a</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-105">value(e,a)</script> must be <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-106-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">∅</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-106">\emptyset</script> because
   there is no other set of values that is simultaneously contained in
-  both <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-101-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mo fence="false" stretchy="false">{</mo><mn>1</mn><mo fence="false" stretchy="false">}</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-101">\{1\}</script> and <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-102-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mo fence="false" stretchy="false">{</mo><mn>2</mn><mo fence="false" stretchy="false">}</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-102">\{2\}</script>.  </p> </div>
+  both <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-107-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mo fence="false" stretchy="false">{</mo><mn>1</mn><mo fence="false" stretchy="false">}</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-107">\{1\}</script> and <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-108-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mo fence="false" stretchy="false">{</mo><mn>2</mn><mo fence="false" stretchy="false">}</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-108">\{2\}</script>.  </p> </div>
 
 
 
 <div class="remark">
   <p>
-  In the above description of how <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-103-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mi>n</mi><mi>t</mi><mi>i</mi><mi>t</mi><mi>i</mi><mi>e</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-103">Entities</script> relate to <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-104-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mi>h</mi><mi>i</mi><mi>n</mi><mi>g</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-104">Things</script>, we
-  require  <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-105-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mi>a</mi><mi>l</mi><mi>u</mi><mi>e</mi><mo stretchy="false">(</mo><mi>e</mi><mo stretchy="false">,</mo><mi>a</mi><mo stretchy="false">)</mo><mo stretchy="false">⊆</mo><mi>v</mi><mi>a</mi><mi>l</mi><mi>u</mi><mi>e</mi><mo stretchy="false">(</mo><mi>t</mi><mi>h</mi><mi>i</mi><mi>n</mi><mi>g</mi><mi>O</mi><mi>f</mi><mo stretchy="false">(</mo><mi>e</mi><mo stretchy="false">)</mo><mo stretchy="false">,</mo><mi>a</mi><mo stretchy="false">,</mo><mi>t</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-105">value(e,a) \subseteq
-  value(thingOf(e),a,t)</script> whenever <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-106-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo stretchy="false">∈</mo><mi>l</mi><mi>i</mi><mi>f</mi><mi>e</mi><mi>t</mi><mi>i</mi><mi>m</mi><mi>e</mi><mo stretchy="false">(</mo><mi>e</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-106">t \in lifetime(e)</script>.  Intuitively, this means that if we are
-  talking about a <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-107-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mi>h</mi><mi>i</mi><mi>n</mi><mi>g</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-107">Thing</script> indirectly by describing an <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-108-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mi>n</mi><mi>t</mi><mi>i</mi><mi>t</mi><mi>y</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-108">Entity</script>, then
-  any attributes we ascribe to the <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-109-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mi>n</mi><mi>t</mi><mi>i</mi><mi>t</mi><mi>y</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-109">Entity</script> must also describe the
-  associated <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-110-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mi>h</mi><mi>i</mi><mi>n</mi><mi>g</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-110">Thing</script> during their common lifetime.  Attributes of both
-  <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-111-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mi>n</mi><mi>t</mi><mi>i</mi><mi>t</mi><mi>i</mi><mi>e</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-111">Entities</script> and <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-112-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mi>h</mi><mi>i</mi><mi>n</mi><mi>g</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-112">Things</script> are multi-valued, so there is no
+  In the above description of how <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-109-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mi>n</mi><mi>t</mi><mi>i</mi><mi>t</mi><mi>i</mi><mi>e</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-109">Entities</script> relate to <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-110-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mi>h</mi><mi>i</mi><mi>n</mi><mi>g</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-110">Things</script>, we
+  require  <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-111-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mi>a</mi><mi>l</mi><mi>u</mi><mi>e</mi><mo stretchy="false">(</mo><mi>e</mi><mo stretchy="false">,</mo><mi>a</mi><mo stretchy="false">)</mo><mo stretchy="false">⊆</mo><mi>v</mi><mi>a</mi><mi>l</mi><mi>u</mi><mi>e</mi><mo stretchy="false">(</mo><mi>t</mi><mi>h</mi><mi>i</mi><mi>n</mi><mi>g</mi><mi>O</mi><mi>f</mi><mo stretchy="false">(</mo><mi>e</mi><mo stretchy="false">)</mo><mo stretchy="false">,</mo><mi>a</mi><mo stretchy="false">,</mo><mi>e</mi><mi>v</mi><mi>t</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-111">value(e,a) \subseteq
+  value(thingOf(e),a,evt)</script> whenever <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-112-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi><mi>v</mi><mi>t</mi><mo stretchy="false">∈</mo><mi>e</mi><mi>v</mi><mi>e</mi><mi>n</mi><mi>t</mi><mi>s</mi><mo stretchy="false">(</mo><mi>e</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-112">evt \in events(e)</script>.  Intuitively, this means that if we are
+  talking about a <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-113-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mi>h</mi><mi>i</mi><mi>n</mi><mi>g</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-113">Thing</script> indirectly by describing an <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-114-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mi>n</mi><mi>t</mi><mi>i</mi><mi>t</mi><mi>y</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-114">Entity</script>, then
+  any attributes we ascribe to the <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-115-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mi>n</mi><mi>t</mi><mi>i</mi><mi>t</mi><mi>y</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-115">Entity</script> must also describe the
+  associated <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-116-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mi>h</mi><mi>i</mi><mi>n</mi><mi>g</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-116">Thing</script> during their common events.  Attributes of both
+  <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-117-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mi>n</mi><mi>t</mi><mi>i</mi><mi>t</mi><mi>i</mi><mi>e</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-117">Entities</script> and <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-118-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mi>h</mi><mi>i</mi><mi>n</mi><mi>g</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-118">Things</script> are multi-valued, so there is no
   inconsistency in saying that an entity has two different values for
   some attribute.  In some
   situations, further uniqueness constraints or range constraints
   could be imposed on attributes.
   </p>
-  <p>Only <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-113-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mi>n</mi><mi>t</mi><mi>i</mi><mi>t</mi><mi>i</mi><mi>e</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-113">Entities</script> are associated with <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-114-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mi>h</mi><mi>i</mi><mi>n</mi><mi>g</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-114">Things</script>, and this
+  <p>Only <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-119-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mi>n</mi><mi>t</mi><mi>i</mi><mi>t</mi><mi>i</mi><mi>e</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-119">Entities</script> are associated with <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-120-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mi>h</mi><mi>i</mi><mi>n</mi><mi>g</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-120">Things</script>, and this
   association is
-  necessary to provide an interpretation for the <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-115-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mi>l</mi><mi>t</mi><mi>e</mi><mi>r</mi><mi>n</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>O</mi><mi>f</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-115">alternateOf</script> and
-  <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-116-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi><mi>p</mi><mi>e</mi><mi>c</mi><mi>i</mi><mi>a</mi><mi>l</mi><mi>i</mi><mi>z</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mi>O</mi><mi>f</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-116">specializationOf</script> relations.  It might also make sense
-  to associate <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-117-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>g</mi><mi>e</mi><mi>n</mi><mi>t</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-117">Agents</script>, <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-118-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>c</mi><mi>t</mi><mi>i</mi><mi>v</mi><mi>i</mi><mi>t</mi><mi>i</mi><mi>e</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-118">Activities</script>, and <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-119-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>I</mi><mi>n</mi><mi>t</mi><mi>e</mi><mi>r</mi><mi>a</mi><mi>c</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-119">Interactions</script> with
-  <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-120-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mi>h</mi><mi>i</mi><mi>n</mi><mi>g</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-120">Things</script>, or with some other structures; however, this is not
+  necessary to provide an interpretation for the <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-121-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mi>l</mi><mi>t</mi><mi>e</mi><mi>r</mi><mi>n</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>O</mi><mi>f</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-121">alternateOf</script> and
+  <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-122-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi><mi>p</mi><mi>e</mi><mi>c</mi><mi>i</mi><mi>a</mi><mi>l</mi><mi>i</mi><mi>z</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mi>O</mi><mi>f</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-122">specializationOf</script> relations.  It might also make sense
+  to associate <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-123-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>g</mi><mi>e</mi><mi>n</mi><mi>t</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-123">Agents</script>, <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-124-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>c</mi><mi>t</mi><mi>i</mi><mi>v</mi><mi>i</mi><mi>t</mi><mi>i</mi><mi>e</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-124">Activities</script>, and <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-125-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>I</mi><mi>n</mi><mi>t</mi><mi>e</mi><mi>r</mi><mi>a</mi><mi>c</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-125">Interactions</script> with
+  <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-126-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mi>h</mi><mi>i</mi><mi>n</mi><mi>g</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-126">Things</script>, or with some other structures; however, this is not
   necessary to model any of the current features of PROV, so in the
   interest of simplicity we do not do this.
   </p>
   </div>
   
 <section id="plans-1">  
-<h5><span class="secno">3.2.1.1 </span> Plans </h5>
+<h4><span class="secno">4.1.1 </span> Plans </h4>
 <p>We identify a specific subset of the entities called
   <em>plans</em>:</p>
 <div class="component" id="plans" data-count="4" data-title="Component 4 (plans)"><div class="ruleTitle"><a class="internalDFN" href="#plans">Component 4 (plans)</a></div>
- <p> A set <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-121-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi><mi>l</mi><mi>a</mi><mi>n</mi><mi>s</mi><mo stretchy="false">⊆</mo><mi>E</mi><mi>n</mi><mi>t</mi><mi>i</mi><mi>t</mi><mi>i</mi><mi>e</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-121">Plans \subseteq Entities</script> of plans.</p>
+ <p> A set <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-127-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi><mi>l</mi><mi>a</mi><mi>n</mi><mi>s</mi><mo stretchy="false">⊆</mo><mi>E</mi><mi>n</mi><mi>t</mi><mi>i</mi><mi>t</mi><mi>i</mi><mi>e</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-127">Plans \subseteq Entities</script> of plans.</p>
   </div>
 </section>
 
 <section id="collections-1">
-  <h5><span class="secno">3.2.1.2 </span>Collections</h5>
+  <h4><span class="secno">4.1.2 </span>Collections</h4>
   <p>We identify another specific subset of the entities called
   <em>collections</em>, with the following associated structure:</p>
   <div class="component" id="collections" data-count="5" data-title="Component 5 (collections)"><div class="ruleTitle"><a class="internalDFN" href="#collections">Component 5 (collections)</a></div>
-    <ul><li>A set <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-122-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi><mi>o</mi><mi>l</mi><mi>l</mi><mi>e</mi><mi>c</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mi>s</mi><mo stretchy="false">⊆</mo><mi>E</mi><mi>n</mi><mi>t</mi><mi>i</mi><mi>t</mi><mi>i</mi><mi>e</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-122">Collections \subseteq Entities</script></li>
-    <li>A membership relation <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-123-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>M</mi><mi>e</mi><mi>m</mi><mi>b</mi><mi>e</mi><mi>r</mi><mi>O</mi><mi>f</mi><mo stretchy="false">⊆</mo><mi>E</mi><mi>n</mi><mi>t</mi><mi>i</mi><mi>t</mi><mi>i</mi><mi>e</mi><mi>s</mi><mo stretchy="false">×</mo><mi>C</mi><mi>o</mi><mi>l</mi><mi>l</mi><mi>e</mi><mi>c</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-123">MemberOf\subseteq Entities \times Collections</script>
+    <ul><li>A set <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-128-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi><mi>o</mi><mi>l</mi><mi>l</mi><mi>e</mi><mi>c</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mi>s</mi><mo stretchy="false">⊆</mo><mi>E</mi><mi>n</mi><mi>t</mi><mi>i</mi><mi>t</mi><mi>i</mi><mi>e</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-128">Collections \subseteq Entities</script></li>
+    <li>A membership relation <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-129-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi><mi>o</mi><mi>n</mi><mi>t</mi><mi>a</mi><mi>i</mi><mi>n</mi><mi>s</mi><mo stretchy="false">⊆</mo><mi>C</mi><mi>o</mi><mi>l</mi><mi>l</mi><mi>e</mi><mi>c</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mi>s</mi><mo stretchy="false">×</mo><mi>E</mi><mi>n</mi><mi>t</mi><mi>i</mi><mi>t</mi><mi>i</mi><mi>e</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-129">Contains\subseteq Collections \times Entities</script>
   indicating when an entity is a member of another (collection)
   entity.</li>
   </ul>
@@ -1504,22 +1471,22 @@
   </section>
 
     <section id="activities-1">
-<h4><span class="secno">3.2.2 </span> Activities </h4>
+<h3><span class="secno">4.2 </span> Activities </h3>
 
 
 <p>An <em>activity</em> is an object that encompasses a set of events.  We introduce:
 </p>
 <div class="component" id="activities" data-count="6" data-title="Component 6 (activities)"><div class="ruleTitle"><a class="internalDFN" href="#activities">Component 6 (activities)</a></div>
-  <ol><li>A set <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-124-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>c</mi><mi>t</mi><mi>i</mi><mi>v</mi><mi>i</mi><mi>t</mi><mi>i</mi><mi>e</mi><mi>s</mi><mo stretchy="false">⊆</mo><mi>O</mi><mi>b</mi><mi>j</mi><mi>e</mi><mi>c</mi><mi>t</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-124">Activities \subseteq Objects</script> of activities.</li>
-  <li>Functions <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-125-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi><mi>t</mi><mi>a</mi><mi>r</mi><mi>t</mi><mi>T</mi><mi>i</mi><mi>m</mi><mi>e</mi><mo stretchy="false">:</mo><mi>A</mi><mi>c</mi><mi>t</mi><mi>i</mi><mi>v</mi><mi>i</mi><mi>t</mi><mi>i</mi><mi>e</mi><mi>s</mi><mo stretchy="false">→</mo><mi>T</mi><mi>i</mi><mi>m</mi><mi>e</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-125">startTime : Activities \to Times</script> and <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-126-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi><mi>n</mi><mi>d</mi><mi>T</mi><mi>i</mi><mi>m</mi><mi>e</mi><mo stretchy="false">:</mo><mi>A</mi><mi>c</mi><mi>t</mi><mi>i</mi><mi>v</mi><mi>i</mi><mi>t</mi><mi>i</mi><mi>e</mi><mi>s</mi><mo stretchy="false">→</mo><mi>T</mi><mi>i</mi><mi>m</mi><mi>e</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-126">endTime
+  <ol><li>A set <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-130-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>c</mi><mi>t</mi><mi>i</mi><mi>v</mi><mi>i</mi><mi>t</mi><mi>i</mi><mi>e</mi><mi>s</mi><mo stretchy="false">⊆</mo><mi>O</mi><mi>b</mi><mi>j</mi><mi>e</mi><mi>c</mi><mi>t</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-130">Activities \subseteq Objects</script> of activities.</li>
+  <li>Functions <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-131-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi><mi>t</mi><mi>a</mi><mi>r</mi><mi>t</mi><mi>T</mi><mi>i</mi><mi>m</mi><mi>e</mi><mo stretchy="false">:</mo><mi>A</mi><mi>c</mi><mi>t</mi><mi>i</mi><mi>v</mi><mi>i</mi><mi>t</mi><mi>i</mi><mi>e</mi><mi>s</mi><mo stretchy="false">→</mo><mi>T</mi><mi>i</mi><mi>m</mi><mi>e</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-131">startTime : Activities \to Times</script> and <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-132-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi><mi>n</mi><mi>d</mi><mi>T</mi><mi>i</mi><mi>m</mi><mi>e</mi><mo stretchy="false">:</mo><mi>A</mi><mi>c</mi><mi>t</mi><mi>i</mi><mi>v</mi><mi>i</mi><mi>t</mi><mi>i</mi><mi>e</mi><mi>s</mi><mo stretchy="false">→</mo><mi>T</mi><mi>i</mi><mi>m</mi><mi>e</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-132">endTime
   :Activities \to Times</script> giving the start and end time of each activity.</li>
-  <li> Activities are disjoint from Entities: <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-127-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mi>n</mi><mi>t</mi><mi>i</mi><mi>t</mi><mi>i</mi><mi>e</mi><mi>s</mi><mo stretchy="false">∩</mo><mi>A</mi><mi>c</mi><mi>t</mi><mi>i</mi><mi>v</mi><mi>i</mi><mi>t</mi><mi>i</mi><mi>e</mi><mi>s</mi><mo stretchy="false">=</mo><mi mathvariant="normal">∅</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-127">Entities\cap Activities
+  <li> Activities are disjoint from Entities: <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-133-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mi>n</mi><mi>t</mi><mi>i</mi><mi>t</mi><mi>i</mi><mi>e</mi><mi>s</mi><mo stretchy="false">∩</mo><mi>A</mi><mi>c</mi><mi>t</mi><mi>i</mi><mi>v</mi><mi>i</mi><mi>t</mi><mi>i</mi><mi>e</mi><mi>s</mi><mo stretchy="false">=</mo><mi mathvariant="normal">∅</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-133">Entities\cap Activities
   = \emptyset</script>.</li>
   </ol>
 </div></section>
   
   <section id="agents-1">
-<h4><span class="secno">3.2.3 </span> Agents </h4>
+<h3><span class="secno">4.3 </span> Agents </h3>
 
 <p>An agent is an object that can act, by controlling, starting,
   ending, or participating in activities.  An agent is something that
@@ -1530,7 +1497,7 @@
   entities and activities are disjoint.  We introduce:
 </p>
 <div class="component" id="agents" data-count="7" data-title="Component 7 (agents)"><div class="ruleTitle"><a class="internalDFN" href="#agents">Component 7 (agents)</a></div>
-  <p>A set <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-128-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>g</mi><mi>e</mi><mi>n</mi><mi>t</mi><mi>s</mi><mo stretchy="false">⊆</mo><mi>O</mi><mi>b</mi><mi>j</mi><mi>e</mi><mi>c</mi><mi>t</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-128">Agents \subseteq Objects</script> of agents.</p>
+  <p>A set <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-134-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>g</mi><mi>e</mi><mi>n</mi><mi>t</mi><mi>s</mi><mo stretchy="false">⊆</mo><mi>O</mi><mi>b</mi><mi>j</mi><mi>e</mi><mi>c</mi><mi>t</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-134">Agents \subseteq Objects</script> of agents.</p>
   </div>
   <div class="remark">
     <p>There is no requirement that every agent is either an activity
@@ -1539,157 +1506,156 @@
 
 
 <section id="influences-1">
-<h4><span class="secno">3.2.4 </span> Influences </h4>
-
-<p>We consider a set <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-129-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>I</mi><mi>n</mi><mi>f</mi><mi>l</mi><mi>u</mi><mi>e</mi><mi>n</mi><mi>c</mi><mi>e</mi><mi>s</mi><mo stretchy="false">⊆</mo><mi>O</mi><mi>b</mi><mi>j</mi><mi>e</mi><mi>c</mi><mi>t</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-129">Influences \subseteq Objects</script> which has disjoint
+<h3><span class="secno">4.4 </span> Influences </h3>
+
+<p>We consider a set <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-135-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>I</mi><mi>n</mi><mi>f</mi><mi>l</mi><mi>u</mi><mi>e</mi><mi>n</mi><mi>c</mi><mi>e</mi><mi>s</mi><mo stretchy="false">⊆</mo><mi>O</mi><mi>b</mi><mi>j</mi><mi>e</mi><mi>c</mi><mi>t</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-135">Influences \subseteq Objects</script> which has disjoint
   subsets
-  <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-130-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mi>v</mi><mi>e</mi><mi>n</mi><mi>t</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-130">Events</script> connecting entities and activities,
-  <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-131-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>s</mi><mi>s</mi><mi>o</mi><mi>c</mi><mi>i</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-131">Associations</script> between agents and activities,
-    <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-132-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>t</mi><mi>t</mi><mi>r</mi><mi>i</mi><mi>b</mi><mi>u</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-132">Attributions</script> between entities and agents,
-  <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-133-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi><mi>o</mi><mi>m</mi><mi>m</mi><mi>u</mi><mi>n</mi><mi>i</mi><mi>c</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-133">Communications</script> between pairs of activities,
-  <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-134-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>D</mi><mi>e</mi><mi>l</mi><mi>e</mi><mi>g</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-134">Delegations</script> between pairs of agents, and
-  <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-135-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>D</mi><mi>e</mi><mi>r</mi><mi>i</mi><mi>v</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-135">Derivations</script> that describe chains of generation and usage
+  <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-136-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mi>v</mi><mi>e</mi><mi>n</mi><mi>t</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-136">Events</script> connecting entities and activities,
+  <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-137-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>s</mi><mi>s</mi><mi>o</mi><mi>c</mi><mi>i</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-137">Associations</script> between agents and activities,
+    <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-138-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>t</mi><mi>t</mi><mi>r</mi><mi>i</mi><mi>b</mi><mi>u</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-138">Attributions</script> between entities and agents,
+  <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-139-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi><mi>o</mi><mi>m</mi><mi>m</mi><mi>u</mi><mi>n</mi><mi>i</mi><mi>c</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-139">Communications</script> between pairs of activities,
+  <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-140-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>D</mi><mi>e</mi><mi>l</mi><mi>e</mi><mi>g</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-140">Delegations</script> between pairs of agents, and
+  <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-141-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>D</mi><mi>e</mi><mi>r</mi><mi>i</mi><mi>v</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-141">Derivations</script> that describe chains of generation and usage
   steps.  These kinds of influences are discussed further below.  Influences are disjoint from entities, activities and agents.
 </p>
 <div class="component" id="influences" data-count="8" data-title="Component 8 (influences)"><div class="ruleTitle"><a class="internalDFN" href="#influences">Component 8 (influences)</a></div>
-  <ol><li> A set <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-136-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>I</mi><mi>n</mi><mi>f</mi><mi>l</mi><mi>u</mi><mi>e</mi><mi>n</mi><mi>c</mi><mi>e</mi><mi>s</mi><mo stretchy="false">=</mo><mi>E</mi><mi>v</mi><mi>e</mi><mi>n</mi><mi>t</mi><mi>s</mi><mo stretchy="false">∪</mo><mi>A</mi><mi>s</mi><mi>s</mi><mi>o</mi><mi>c</mi><mi>i</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mi>s</mi><mo stretchy="false">∪</mo><mi>C</mi><mi>o</mi><mi>m</mi><mi>m</mi><mi>u</mi><mi>n</mi><mi>i</mi><mi>c</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mi>s</mi><mo stretchy="false">∪</mo><mi>D</mi><mi>e</mi><mi>l</mi><mi>e</mi><mi>g</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mi>s</mi><mo stretchy="false">∪</mo><mi>D</mi><mi>e</mi><mi>r</mi><mi>i</mi><mi>v</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mi>s</mi><mo stretchy="false">⊆</mo><mi>O</mi><mi>b</mi><mi>j</mi><mi>e</mi><mi>c</mi><mi>t</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-136">Influences = Events \cup Associations \cup
+  <ol><li> A set <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-142-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>I</mi><mi>n</mi><mi>f</mi><mi>l</mi><mi>u</mi><mi>e</mi><mi>n</mi><mi>c</mi><mi>e</mi><mi>s</mi><mo stretchy="false">=</mo><mi>E</mi><mi>v</mi><mi>e</mi><mi>n</mi><mi>t</mi><mi>s</mi><mo stretchy="false">∪</mo><mi>A</mi><mi>s</mi><mi>s</mi><mi>o</mi><mi>c</mi><mi>i</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mi>s</mi><mo stretchy="false">∪</mo><mi>C</mi><mi>o</mi><mi>m</mi><mi>m</mi><mi>u</mi><mi>n</mi><mi>i</mi><mi>c</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mi>s</mi><mo stretchy="false">∪</mo><mi>D</mi><mi>e</mi><mi>l</mi><mi>e</mi><mi>g</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mi>s</mi><mo stretchy="false">∪</mo><mi>D</mi><mi>e</mi><mi>r</mi><mi>i</mi><mi>v</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mi>s</mi><mo stretchy="false">⊆</mo><mi>O</mi><mi>b</mi><mi>j</mi><mi>e</mi><mi>c</mi><mi>t</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-142">Influences = Events \cup Associations \cup
   Communications \cup Delegations \cup Derivations \subseteq Objects</script>
 </li>
-<li> The sets <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-137-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mi>v</mi><mi>e</mi><mi>n</mi><mi>t</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-137">Events</script>, <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-138-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>s</mi><mi>s</mi><mi>o</mi><mi>c</mi><mi>i</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-138">Associations</script>, <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-139-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi><mi>o</mi><mi>m</mi><mi>m</mi><mi>u</mi><mi>n</mi><mi>i</mi><mi>c</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-139">Communications</script>, <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-140-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>D</mi><mi>e</mi><mi>l</mi><mi>e</mi><mi>g</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-140">Delegations</script>
-  and <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-141-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>D</mi><mi>e</mi><mi>r</mi><mi>i</mi><mi>v</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-141">Derivations</script> are all pairwise disjoint.
+<li> The sets <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-143-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mi>v</mi><mi>e</mi><mi>n</mi><mi>t</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-143">Events</script>, <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-144-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>s</mi><mi>s</mi><mi>o</mi><mi>c</mi><mi>i</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-144">Associations</script>, <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-145-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi><mi>o</mi><mi>m</mi><mi>m</mi><mi>u</mi><mi>n</mi><mi>i</mi><mi>c</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-145">Communications</script>, <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-146-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>D</mi><mi>e</mi><mi>l</mi><mi>e</mi><mi>g</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-146">Delegations</script>
+  and <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-147-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>D</mi><mi>e</mi><mi>r</mi><mi>i</mi><mi>v</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-147">Derivations</script> are all pairwise disjoint.
 </li><li> Influences are disjoint from entities, agents and
-activities:  <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-142-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>I</mi><mi>n</mi><mi>f</mi><mi>l</mi><mi>u</mi><mi>e</mi><mi>n</mi><mi>c</mi><mi>e</mi><mi>s</mi><mo stretchy="false">∩</mo><mo stretchy="false">(</mo><mi>E</mi><mi>n</mi><mi>t</mi><mi>i</mi><mi>t</mi><mi>i</mi><mi>e</mi><mi>s</mi><mo stretchy="false">∪</mo><mi>A</mi><mi>c</mi><mi>t</mi><mi>i</mi><mi>v</mi><mi>i</mi><mi>t</mi><mi>i</mi><mi>e</mi><mi>s</mi><mo stretchy="false">∪</mo><mi>A</mi><mi>g</mi><mi>e</mi><mi>n</mi><mi>t</mi><mi>s</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mi mathvariant="normal">∅</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-142">Influences \cap (Entities \cup Activities \cup Agents) = \emptyset</script>
+activities:  <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-148-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>I</mi><mi>n</mi><mi>f</mi><mi>l</mi><mi>u</mi><mi>e</mi><mi>n</mi><mi>c</mi><mi>e</mi><mi>s</mi><mo stretchy="false">∩</mo><mo stretchy="false">(</mo><mi>E</mi><mi>n</mi><mi>t</mi><mi>i</mi><mi>t</mi><mi>i</mi><mi>e</mi><mi>s</mi><mo stretchy="false">∪</mo><mi>A</mi><mi>c</mi><mi>t</mi><mi>i</mi><mi>v</mi><mi>i</mi><mi>t</mi><mi>i</mi><mi>e</mi><mi>s</mi><mo stretchy="false">∪</mo><mi>A</mi><mi>g</mi><mi>e</mi><mi>n</mi><mi>t</mi><mi>s</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mi mathvariant="normal">∅</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-148">Influences \cap (Entities \cup Activities \cup Agents) = \emptyset</script>
 </li>
-<li>An associated function <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-143-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>i</mi><mi>n</mi><mi>f</mi><mi>l</mi><mi>u</mi><mi>e</mi><mi>n</mi><mi>c</mi><mi>e</mi><mi>d</mi><mo stretchy="false">:</mo><mi>I</mi><mi>n</mi><mi>f</mi><mi>l</mi><mi>u</mi><mi>e</mi><mi>n</mi><mi>c</mi><mi>e</mi><mi>s</mi><mo stretchy="false">→</mo><mi>O</mi><mi>b</mi><mi>j</mi><mi>e</mi><mi>c</mi><mi>t</mi><mi>s</mi><mo stretchy="false">×</mo><mi>O</mi><mi>b</mi><mi>j</mi><mi>e</mi><mi>c</mi><mi>t</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-143">influenced : Influences \to
+<li>An associated function <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-149-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>i</mi><mi>n</mi><mi>f</mi><mi>l</mi><mi>u</mi><mi>e</mi><mi>n</mi><mi>c</mi><mi>e</mi><mi>d</mi><mo stretchy="false">:</mo><mi>I</mi><mi>n</mi><mi>f</mi><mi>l</mi><mi>u</mi><mi>e</mi><mi>n</mi><mi>c</mi><mi>e</mi><mi>s</mi><mo stretchy="false">→</mo><mi>O</mi><mi>b</mi><mi>j</mi><mi>e</mi><mi>c</mi><mi>t</mi><mi>s</mi><mo stretchy="false">×</mo><mi>O</mi><mi>b</mi><mi>j</mi><mi>e</mi><mi>c</mi><mi>t</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-149">influenced : Influences \to
   Objects \times Objects</script> giving the source and target of each influence.</li>
 </ol>
 </div>
 
 
 <section id="events-1">
-<h5><span class="secno">3.2.4.1 </span> Events </h5>
-
-<p>An <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-144-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mi>v</mi><mi>e</mi><mi>n</mi><mi>t</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-144">Event</script> is an influence whose lifetime is a single time
+<h4><span class="secno">4.4.1 </span> Events </h4>
+
+<p>An <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-150-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mi>v</mi><mi>e</mi><mi>n</mi><mi>t</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-150">Event</script> is an influence whose events is a single time
 instant, and relates an activity to an entity (which could be an
 agent).  Events have types including usage, generation, invalidation, starting and ending.  Events are instantaneous.  We introduce:
 </p>
 <div class="component" id="events" data-count="9" data-title="Component 9 (events)"><div class="ruleTitle"><a class="internalDFN" href="#events">Component 9 (events)</a></div>
-<ol><li> A set <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-145-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mi>v</mi><mi>e</mi><mi>n</mi><mi>t</mi><mi>s</mi><mo stretchy="false">⊆</mo><mi>I</mi><mi>n</mi><mi>f</mi><mi>l</mi><mi>u</mi><mi>e</mi><mi>n</mi><mi>c</mi><mi>e</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-145">Events \subseteq Influences</script> of events, partitioned
-  into disjoint subsets <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-146-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>S</mi><mi>t</mi><mi>a</mi><mi>r</mi><mi>t</mi><mi>s</mi><mo stretchy="false">,</mo><mi>E</mi><mi>n</mi><mi>d</mi><mi>s</mi><mo stretchy="false">,</mo><mi>G</mi><mi>e</mi><mi>n</mi><mi>e</mi><mi>r</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mi>s</mi><mo stretchy="false">,</mo><mi>U</mi><mi>s</mi><mi>a</mi><mi>g</mi><mi>e</mi><mi>s</mi><mo stretchy="false">,</mo><mi>I</mi><mi>n</mi><mi>v</mi><mi>a</mi><mi>l</mi><mi>i</mi><mi>d</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-146">Starts, Ends, Generations, Usages,
+<ol><li> A set <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-151-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mi>v</mi><mi>e</mi><mi>n</mi><mi>t</mi><mi>s</mi><mo stretchy="false">⊆</mo><mi>I</mi><mi>n</mi><mi>f</mi><mi>l</mi><mi>u</mi><mi>e</mi><mi>n</mi><mi>c</mi><mi>e</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-151">Events \subseteq Influences</script> of events, partitioned
+  into disjoint subsets <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-152-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>S</mi><mi>t</mi><mi>a</mi><mi>r</mi><mi>t</mi><mi>s</mi><mo stretchy="false">,</mo><mi>E</mi><mi>n</mi><mi>d</mi><mi>s</mi><mo stretchy="false">,</mo><mi>G</mi><mi>e</mi><mi>n</mi><mi>e</mi><mi>r</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mi>s</mi><mo stretchy="false">,</mo><mi>U</mi><mi>s</mi><mi>a</mi><mi>g</mi><mi>e</mi><mi>s</mi><mo stretchy="false">,</mo><mi>I</mi><mi>n</mi><mi>v</mi><mi>a</mi><mi>l</mi><mi>i</mi><mi>d</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-152">Starts, Ends, Generations, Usages,
   Invalidations</script>.
-</li><li> A function <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-147-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mi>i</mi><mi>m</mi><mi>e</mi><mo stretchy="false">:</mo><mi>E</mi><mi>v</mi><mi>e</mi><mi>n</mi><mi>t</mi><mi>s</mi><mo stretchy="false">→</mo><mi>T</mi><mi>i</mi><mi>m</mi><mi>e</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-147">time : Events \to Times</script> giving the time of each
-event, such that <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-148-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>l</mi><mi>i</mi><mi>f</mi><mi>e</mi><mi>t</mi><mi>i</mi><mi>m</mi><mi>e</mi><mo stretchy="false">(</mo><mi>e</mi><mi>v</mi><mi>t</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo fence="false" stretchy="false">{</mo><mi>t</mi><mi>i</mi><mi>m</mi><mi>e</mi><mo stretchy="false">(</mo><mi>e</mi><mi>v</mi><mi>t</mi><mo stretchy="false">)</mo><mo fence="false" stretchy="false">}</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-148">lifetime(evt) = \{time(evt)\}</script>.
+</li><li> A function <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-153-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mi>i</mi><mi>m</mi><mi>e</mi><mo stretchy="false">:</mo><mi>E</mi><mi>v</mi><mi>e</mi><mi>n</mi><mi>t</mi><mi>s</mi><mo stretchy="false">→</mo><mi>T</mi><mi>i</mi><mi>m</mi><mi>e</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-153">time : Events \to Times</script>.
 </li>
-<li> A quasi-ordering on events <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-149-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mo stretchy="false">⪯⊂</mo><mi>E</mi><mi>v</mi><mi>e</mi><mi>n</mi><mi>t</mi><mi>s</mi><mo stretchy="false">×</mo><mi>E</mi><mi>v</mi><mi>e</mi><mi>n</mi><mi>t</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-149">\preceq \subset Events \times
-Events</script>.  We write <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-150-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi><mo stretchy="false">≺</mo><msup><mi>e</mi><mo>′</mo></msup></math></span></span></span><script type="math/tex" id="MathJax-Element-150">e \prec e'</script> when <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-151-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi><mo stretchy="false">⪯</mo><msup><mi>e</mi><mo>′</mo></msup></math></span></span></span><script type="math/tex" id="MathJax-Element-151">e \preceq e'</script> and <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-152-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>e</mi><mo>′</mo></msup><mo stretchy="false">⪯̸</mo><mi>e</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-152">e'
+<li> A quasi-ordering on events <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-154-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mo stretchy="false">⪯⊂</mo><mi>E</mi><mi>v</mi><mi>e</mi><mi>n</mi><mi>t</mi><mi>s</mi><mo stretchy="false">×</mo><mi>E</mi><mi>v</mi><mi>e</mi><mi>n</mi><mi>t</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-154">\preceq \subset Events \times
+Events</script>.  We write <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-155-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi><mo stretchy="false">≺</mo><msup><mi>e</mi><mo>′</mo></msup></math></span></span></span><script type="math/tex" id="MathJax-Element-155">e \prec e'</script> when <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-156-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi><mo stretchy="false">⪯</mo><msup><mi>e</mi><mo>′</mo></msup></math></span></span></span><script type="math/tex" id="MathJax-Element-156">e \preceq e'</script> and <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-157-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>e</mi><mo>′</mo></msup><mo stretchy="false">⪯̸</mo><mi>e</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-157">e'
 \not\preceq e</script> hold.
 </li>
-<li>A function <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-153-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi><mi>t</mi><mi>a</mi><mi>r</mi><mi>t</mi><mi>e</mi><mi>d</mi><mo stretchy="false">:</mo><mi>S</mi><mi>t</mi><mi>a</mi><mi>r</mi><mi>t</mi><mi>s</mi><mo stretchy="false">→</mo><mi>A</mi><mi>c</mi><mi>t</mi><mi>i</mi><mi>v</mi><mi>i</mi><mi>t</mi><mi>i</mi><mi>e</mi><mi>s</mi><mo stretchy="false">×</mo><mi>E</mi><mi>n</mi><mi>t</mi><mi>i</mi><mi>t</mi><mi>i</mi><mi>e</mi><mi>s</mi><mo stretchy="false">×</mo><mi>A</mi><mi>c</mi><mi>t</mi><mi>i</mi><mi>v</mi><mi>i</mi><mi>t</mi><mi>i</mi><mi>e</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-153">started : Starts \to Activities \times Entities \times Activities</script>.
-</li>
-<li>A function <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-154-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi><mi>n</mi><mi>d</mi><mi>e</mi><mi>d</mi><mo stretchy="false">:</mo><mi>E</mi><mi>n</mi><mi>d</mi><mi>s</mi><mo stretchy="false">→</mo><mi>A</mi><mi>c</mi><mi>t</mi><mi>i</mi><mi>v</mi><mi>i</mi><mi>t</mi><mi>i</mi><mi>e</mi><mi>s</mi><mo stretchy="false">×</mo><mi>E</mi><mi>n</mi><mi>t</mi><mi>i</mi><mi>t</mi><mi>i</mi><mi>e</mi><mi>s</mi><mo stretchy="false">×</mo><mi>A</mi><mi>c</mi><mi>t</mi><mi>i</mi><mi>v</mi><mi>i</mi><mi>t</mi><mi>i</mi><mi>e</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-154">ended : Ends \to Activities \times Entities \times Activities</script>.
+<li>A function <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-158-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi><mi>t</mi><mi>a</mi><mi>r</mi><mi>t</mi><mi>e</mi><mi>d</mi><mo stretchy="false">:</mo><mi>S</mi><mi>t</mi><mi>a</mi><mi>r</mi><mi>t</mi><mi>s</mi><mo stretchy="false">→</mo><mi>A</mi><mi>c</mi><mi>t</mi><mi>i</mi><mi>v</mi><mi>i</mi><mi>t</mi><mi>i</mi><mi>e</mi><mi>s</mi><mo stretchy="false">×</mo><mi>E</mi><mi>n</mi><mi>t</mi><mi>i</mi><mi>t</mi><mi>i</mi><mi>e</mi><mi>s</mi><mo stretchy="false">×</mo><mi>A</mi><mi>c</mi><mi>t</mi><mi>i</mi><mi>v</mi><mi>i</mi><mi>t</mi><mi>i</mi><mi>e</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-158">started : Starts \to Activities \times Entities \times Activities</script>.
 </li>
-<li>A function <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-155-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>u</mi><mi>s</mi><mi>e</mi><mi>d</mi><mo stretchy="false">:</mo><mi>U</mi><mi>s</mi><mi>a</mi><mi>g</mi><mi>e</mi><mi>s</mi><mo stretchy="false">→</mo><mi>A</mi><mi>c</mi><mi>t</mi><mi>i</mi><mi>v</mi><mi>i</mi><mi>t</mi><mi>i</mi><mi>e</mi><mi>s</mi><mo stretchy="false">×</mo><mi>E</mi><mi>n</mi><mi>t</mi><mi>i</mi><mi>t</mi><mi>i</mi><mi>e</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-155">used : Usages \to Activities \times Entities</script>.
+<li>A function <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-159-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi><mi>n</mi><mi>d</mi><mi>e</mi><mi>d</mi><mo stretchy="false">:</mo><mi>E</mi><mi>n</mi><mi>d</mi><mi>s</mi><mo stretchy="false">→</mo><mi>A</mi><mi>c</mi><mi>t</mi><mi>i</mi><mi>v</mi><mi>i</mi><mi>t</mi><mi>i</mi><mi>e</mi><mi>s</mi><mo stretchy="false">×</mo><mi>E</mi><mi>n</mi><mi>t</mi><mi>i</mi><mi>t</mi><mi>i</mi><mi>e</mi><mi>s</mi><mo stretchy="false">×</mo><mi>A</mi><mi>c</mi><mi>t</mi><mi>i</mi><mi>v</mi><mi>i</mi><mi>t</mi><mi>i</mi><mi>e</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-159">ended : Ends \to Activities \times Entities \times Activities</script>.
 </li>
-<li>A function <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-156-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mi>e</mi><mi>n</mi><mi>e</mi><mi>r</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>d</mi><mo stretchy="false">:</mo><mi>G</mi><mi>e</mi><mi>n</mi><mi>e</mi><mi>r</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mi>s</mi><mo stretchy="false">→</mo><mi>E</mi><mi>n</mi><mi>t</mi><mi>i</mi><mi>t</mi><mi>i</mi><mi>e</mi><mi>s</mi><mo stretchy="false">×</mo><mi>A</mi><mi>c</mi><mi>t</mi><mi>i</mi><mi>v</mi><mi>i</mi><mi>t</mi><mi>i</mi><mi>e</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-156">generated : Generations \to Entities \times Activities</script>.
+<li>A function <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-160-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>u</mi><mi>s</mi><mi>e</mi><mi>d</mi><mo stretchy="false">:</mo><mi>U</mi><mi>s</mi><mi>a</mi><mi>g</mi><mi>e</mi><mi>s</mi><mo stretchy="false">→</mo><mi>A</mi><mi>c</mi><mi>t</mi><mi>i</mi><mi>v</mi><mi>i</mi><mi>t</mi><mi>i</mi><mi>e</mi><mi>s</mi><mo stretchy="false">×</mo><mi>E</mi><mi>n</mi><mi>t</mi><mi>i</mi><mi>t</mi><mi>i</mi><mi>e</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-160">used : Usages \to Activities \times Entities</script>.
 </li>
-<li>A function <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-157-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>i</mi><mi>n</mi><mi>v</mi><mi>a</mi><mi>l</mi><mi>i</mi><mi>d</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>d</mi><mo stretchy="false">:</mo><mi>I</mi><mi>n</mi><mi>v</mi><mi>a</mi><mi>l</mi><mi>i</mi><mi>d</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mi>s</mi><mo stretchy="false">→</mo><mi>E</mi><mi>n</mi><mi>t</mi><mi>i</mi><mi>t</mi><mi>i</mi><mi>e</mi><mi>s</mi><mo stretchy="false">×</mo><mi>A</mi><mi>c</mi><mi>t</mi><mi>i</mi><mi>v</mi><mi>i</mi><mi>t</mi><mi>i</mi><mi>e</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-157">invalidated : Invalidations \to Entities \times Activities</script>.
+<li>A function <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-161-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mi>e</mi><mi>n</mi><mi>e</mi><mi>r</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>d</mi><mo stretchy="false">:</mo><mi>G</mi><mi>e</mi><mi>n</mi><mi>e</mi><mi>r</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mi>s</mi><mo stretchy="false">→</mo><mi>E</mi><mi>n</mi><mi>t</mi><mi>i</mi><mi>t</mi><mi>i</mi><mi>e</mi><mi>s</mi><mo stretchy="false">×</mo><mi>A</mi><mi>c</mi><mi>t</mi><mi>i</mi><mi>v</mi><mi>i</mi><mi>t</mi><mi>i</mi><mi>e</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-161">generated : Generations \to Entities \times Activities</script>.
+</li>
+<li>A function <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-162-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>i</mi><mi>n</mi><mi>v</mi><mi>a</mi><mi>l</mi><mi>i</mi><mi>d</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>d</mi><mo stretchy="false">:</mo><mi>I</mi><mi>n</mi><mi>v</mi><mi>a</mi><mi>l</mi><mi>i</mi><mi>d</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mi>s</mi><mo stretchy="false">→</mo><mi>E</mi><mi>n</mi><mi>t</mi><mi>i</mi><mi>t</mi><mi>i</mi><mi>e</mi><mi>s</mi><mo stretchy="false">×</mo><mi>A</mi><mi>c</mi><mi>t</mi><mi>i</mi><mi>v</mi><mi>i</mi><mi>t</mi><mi>i</mi><mi>e</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-162">invalidated : Invalidations \to Entities \times Activities</script>.
 </li>
 </ol>
 </div>
 </section>
 <section id="associations-1">
 
-<h5><span class="secno">3.2.4.2 </span> Associations </h5>
-
-<p>An <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-158-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>s</mi><mi>s</mi><mi>o</mi><mi>c</mi><mi>i</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-158">Association</script> is an influence relating an agent to an activity
+<h4><span class="secno">4.4.2 </span> Associations </h4>
+
+<p>An <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-163-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>s</mi><mi>s</mi><mi>o</mi><mi>c</mi><mi>i</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-163">Association</script> is an influence relating an agent to an activity
 and optional plan.  To model associations, we introduce:
 </p>
 <div class="component" id="associations" data-count="10" data-title="Component 10 (associations)"><div class="ruleTitle"><a class="internalDFN" href="#associations">Component 10 (associations)</a></div>
-  <p>A set <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-159-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>s</mi><mi>s</mi><mi>o</mi><mi>c</mi><mi>i</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mi>s</mi><mo stretchy="false">⊆</mo><mi>I</mi><mi>n</mi><mi>f</mi><mi>l</mi><mi>u</mi><mi>e</mi><mi>n</mi><mi>c</mi><mi>e</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-159">Associations \subseteq Influences</script> with associated
-  function <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-160-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mi>s</mi><mi>s</mi><mi>o</mi><mi>c</mi><mi>i</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>d</mi><mi>W</mi><mi>i</mi><mi>t</mi><mi>h</mi><mo stretchy="false">:</mo><mi>A</mi><mi>s</mi><mi>s</mi><mi>o</mi><mi>c</mi><mi>i</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mi>s</mi><mo stretchy="false">→</mo><mi>A</mi><mi>g</mi><mi>e</mi><mi>n</mi><mi>t</mi><mi>s</mi><mo stretchy="false">×</mo><mi>A</mi><mi>c</mi><mi>t</mi><mi>i</mi><mi>v</mi><mi>i</mi><mi>t</mi><mi>i</mi><mi>e</mi><mi>s</mi><mo stretchy="false">×</mo><mi>P</mi><mi>l</mi><mi>a</mi><mi>n</mi><msub><mi>s</mi><mi mathvariant="normal">⊥</mi></msub></math></span></span></span><script type="math/tex" id="MathJax-Element-160">associatedWith : Associations \to  Agents \times Activities \times Plans_\bot</script>.
+  <p>A set <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-164-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>s</mi><mi>s</mi><mi>o</mi><mi>c</mi><mi>i</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mi>s</mi><mo stretchy="false">⊆</mo><mi>I</mi><mi>n</mi><mi>f</mi><mi>l</mi><mi>u</mi><mi>e</mi><mi>n</mi><mi>c</mi><mi>e</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-164">Associations \subseteq Influences</script> with associated
+  function <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-165-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mi>s</mi><mi>s</mi><mi>o</mi><mi>c</mi><mi>i</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>d</mi><mi>W</mi><mi>i</mi><mi>t</mi><mi>h</mi><mo stretchy="false">:</mo><mi>A</mi><mi>s</mi><mi>s</mi><mi>o</mi><mi>c</mi><mi>i</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mi>s</mi><mo stretchy="false">→</mo><mi>A</mi><mi>g</mi><mi>e</mi><mi>n</mi><mi>t</mi><mi>s</mi><mo stretchy="false">×</mo><mi>A</mi><mi>c</mi><mi>t</mi><mi>i</mi><mi>v</mi><mi>i</mi><mi>t</mi><mi>i</mi><mi>e</mi><mi>s</mi><mo stretchy="false">×</mo><mi>P</mi><mi>l</mi><mi>a</mi><mi>n</mi><msub><mi>s</mi><mi mathvariant="normal">⊥</mi></msub></math></span></span></span><script type="math/tex" id="MathJax-Element-165">associatedWith : Associations \to  Agents \times Activities \times Plans_\bot</script>.
 </p>
   </div>
   </section>
 <section id="attributions-1">
 
-<h5><span class="secno">3.2.4.3 </span> Attributions </h5>
-
-<p>An <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-161-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>t</mi><mi>t</mi><mi>r</mi><mi>i</mi><mi>b</mi><mi>u</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-161">Attribution</script> is an influence relating an entity to an agent.  To model attributions, we introduce:
+<h4><span class="secno">4.4.3 </span> Attributions </h4>
+
+<p>An <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-166-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>t</mi><mi>t</mi><mi>r</mi><mi>i</mi><mi>b</mi><mi>u</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-166">Attribution</script> is an influence relating an entity to an agent.  To model attributions, we introduce:
 </p>
 <div class="component" id="attributions" data-count="11" data-title="Component 11 (attributions)"><div class="ruleTitle"><a class="internalDFN" href="#attributions">Component 11 (attributions)</a></div>
-  <p>A set <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-162-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>t</mi><mi>t</mi><mi>r</mi><mi>i</mi><mi>b</mi><mi>u</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mi>s</mi><mo stretchy="false">⊆</mo><mi>I</mi><mi>n</mi><mi>f</mi><mi>l</mi><mi>u</mi><mi>e</mi><mi>n</mi><mi>c</mi><mi>e</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-162">Attributions \subseteq Influences</script> with associated
-  function <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-163-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mi>t</mi><mi>t</mi><mi>r</mi><mi>i</mi><mi>b</mi><mi>u</mi><mi>t</mi><mi>e</mi><mi>d</mi><mi>T</mi><mi>o</mi><mo stretchy="false">:</mo><mi>A</mi><mi>t</mi><mi>t</mi><mi>r</mi><mi>i</mi><mi>b</mi><mi>u</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mi>s</mi><mo stretchy="false">→</mo><mi>E</mi><mi>n</mi><mi>t</mi><mi>i</mi><mi>t</mi><mi>i</mi><mi>e</mi><mi>s</mi><mo stretchy="false">×</mo><mi>A</mi><mi>g</mi><mi>e</mi><mi>n</mi><mi>t</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-163">attributedTo : Attributions \to Entities \times Agents</script>.
+  <p>A set <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-167-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>t</mi><mi>t</mi><mi>r</mi><mi>i</mi><mi>b</mi><mi>u</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mi>s</mi><mo stretchy="false">⊆</mo><mi>I</mi><mi>n</mi><mi>f</mi><mi>l</mi><mi>u</mi><mi>e</mi><mi>n</mi><mi>c</mi><mi>e</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-167">Attributions \subseteq Influences</script> with associated
+  function <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-168-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mi>t</mi><mi>t</mi><mi>r</mi><mi>i</mi><mi>b</mi><mi>u</mi><mi>t</mi><mi>e</mi><mi>d</mi><mi>T</mi><mi>o</mi><mo stretchy="false">:</mo><mi>A</mi><mi>t</mi><mi>t</mi><mi>r</mi><mi>i</mi><mi>b</mi><mi>u</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mi>s</mi><mo stretchy="false">→</mo><mi>E</mi><mi>n</mi><mi>t</mi><mi>i</mi><mi>t</mi><mi>i</mi><mi>e</mi><mi>s</mi><mo stretchy="false">×</mo><mi>A</mi><mi>g</mi><mi>e</mi><mi>n</mi><mi>t</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-168">attributedTo : Attributions \to Entities \times Agents</script>.
 </p>
   </div>
   
 </section>
   <section id="communications-1">
-  <h5><span class="secno">3.2.4.4 </span>Communications</h5>
-  <p>A <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-164-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi><mi>o</mi><mi>m</mi><mi>m</mi><mi>u</mi><mi>n</mi><mi>i</mi><mi>c</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-164">Communication</script> is an influence indicating exchange of
+  <h4><span class="secno">4.4.4 </span>Communications</h4>
+  <p>A <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-169-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi><mi>o</mi><mi>m</mi><mi>m</mi><mi>u</mi><mi>n</mi><mi>i</mi><mi>c</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-169">Communication</script> is an influence indicating exchange of
   information between activities.  To model communications, we introduce:
 </p>
 <div class="component" id="communications" data-count="12" data-title="Component 12 (communications)"><div class="ruleTitle"><a class="internalDFN" href="#communications">Component 12 (communications)</a></div>
-  <p>A set <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-165-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi><mi>o</mi><mi>m</mi><mi>m</mi><mi>u</mi><mi>n</mi><mi>i</mi><mi>c</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mi>s</mi><mo stretchy="false">⊆</mo><mi>I</mi><mi>n</mi><mi>f</mi><mi>l</mi><mi>u</mi><mi>e</mi><mi>n</mi><mi>c</mi><mi>e</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-165">Communications \subseteq Influences</script> with associated
-  function <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-166-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi><mi>o</mi><mi>m</mi><mi>m</mi><mi>u</mi><mi>n</mi><mi>i</mi><mi>c</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>d</mi><mo stretchy="false">:</mo><mi>C</mi><mi>o</mi><mi>m</mi><mi>m</mi><mi>u</mi><mi>n</mi><mi>i</mi><mi>c</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mi>s</mi><mo stretchy="false">→</mo><mi>A</mi><mi>c</mi><mi>t</mi><mi>i</mi><mi>v</mi><mi>i</mi><mi>t</mi><mi>i</mi><mi>e</mi><mi>s</mi><mo stretchy="false">×</mo><mi>A</mi><mi>c</mi><mi>t</mi><mi>i</mi><mi>v</mi><mi>i</mi><mi>t</mi><mi>i</mi><mi>e</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-166">communicated : Communications \to Activities \times Activities</script>.
+  <p>A set <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-170-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi><mi>o</mi><mi>m</mi><mi>m</mi><mi>u</mi><mi>n</mi><mi>i</mi><mi>c</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mi>s</mi><mo stretchy="false">⊆</mo><mi>I</mi><mi>n</mi><mi>f</mi><mi>l</mi><mi>u</mi><mi>e</mi><mi>n</mi><mi>c</mi><mi>e</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-170">Communications \subseteq Influences</script> with associated
+  function <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-171-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi><mi>o</mi><mi>m</mi><mi>m</mi><mi>u</mi><mi>n</mi><mi>i</mi><mi>c</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>d</mi><mo stretchy="false">:</mo><mi>C</mi><mi>o</mi><mi>m</mi><mi>m</mi><mi>u</mi><mi>n</mi><mi>i</mi><mi>c</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mi>s</mi><mo stretchy="false">→</mo><mi>A</mi><mi>c</mi><mi>t</mi><mi>i</mi><mi>v</mi><mi>i</mi><mi>t</mi><mi>i</mi><mi>e</mi><mi>s</mi><mo stretchy="false">×</mo><mi>A</mi><mi>c</mi><mi>t</mi><mi>i</mi><mi>v</mi><mi>i</mi><mi>t</mi><mi>i</mi><mi>e</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-171">communicated : Communications \to Activities \times Activities</script>.
 </p>
   </div>
   
 
 </section>
   <section id="delegations-1">
-  <h5><span class="secno">3.2.4.5 </span>Delegations</h5>
-<p>A <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-167-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>D</mi><mi>e</mi><mi>l</mi><mi>e</mi><mi>g</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-167">Delegation</script> is an influence relating  two agents.  To
+  <h4><span class="secno">4.4.5 </span>Delegations</h4>
+<p>A <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-172-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>D</mi><mi>e</mi><mi>l</mi><mi>e</mi><mi>g</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-172">Delegation</script> is an influence relating  two agents.  To
   model delegations, we introduce:
 </p>
 <div class="component" id="delegations" data-count="13" data-title="Component 13 (delegations)"><div class="ruleTitle"><a class="internalDFN" href="#delegations">Component 13 (delegations)</a></div>
-  <p>A set <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-168-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>D</mi><mi>e</mi><mi>l</mi><mi>e</mi><mi>g</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mi>s</mi><mo stretchy="false">⊆</mo><mi>I</mi><mi>n</mi><mi>f</mi><mi>l</mi><mi>u</mi><mi>e</mi><mi>n</mi><mi>c</mi><mi>e</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-168">Delegations \subseteq Influences</script> and associated function
-  <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-169-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mi>c</mi><mi>t</mi><mi>e</mi><mi>d</mi><mi>F</mi><mi>o</mi><mi>r</mi><mo stretchy="false">:</mo><mi>D</mi><mi>e</mi><mi>l</mi><mi>e</mi><mi>g</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mi>s</mi><mo stretchy="false">→</mo><mi>A</mi><mi>g</mi><mi>e</mi><mi>n</mi><mi>t</mi><mi>s</mi><mo stretchy="false">×</mo><mi>A</mi><mi>g</mi><mi>e</mi><mi>n</mi><mi>t</mi><mi>s</mi><mo stretchy="false">×</mo><mi>A</mi><mi>c</mi><mi>t</mi><mi>i</mi><mi>v</mi><mi>i</mi><mi>t</mi><mi>i</mi><mi>e</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-169">actedFor : Delegations \to Agents \times Agents \times Activities</script>
+  <p>A set <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-173-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>D</mi><mi>e</mi><mi>l</mi><mi>e</mi><mi>g</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mi>s</mi><mo stretchy="false">⊆</mo><mi>I</mi><mi>n</mi><mi>f</mi><mi>l</mi><mi>u</mi><mi>e</mi><mi>n</mi><mi>c</mi><mi>e</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-173">Delegations \subseteq Influences</script> and associated function
+  <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-174-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mi>c</mi><mi>t</mi><mi>e</mi><mi>d</mi><mi>F</mi><mi>o</mi><mi>r</mi><mo stretchy="false">:</mo><mi>D</mi><mi>e</mi><mi>l</mi><mi>e</mi><mi>g</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mi>s</mi><mo stretchy="false">→</mo><mi>A</mi><mi>g</mi><mi>e</mi><mi>n</mi><mi>t</mi><mi>s</mi><mo stretchy="false">×</mo><mi>A</mi><mi>g</mi><mi>e</mi><mi>n</mi><mi>t</mi><mi>s</mi><mo stretchy="false">×</mo><mi>A</mi><mi>c</mi><mi>t</mi><mi>i</mi><mi>v</mi><mi>i</mi><mi>t</mi><mi>i</mi><mi>e</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-174">actedFor : Delegations \to Agents \times Agents \times Activities</script>
 </p>
   </div>
   
 </section>
   <section id="derivations-1">
   
-  <h5><span class="secno">3.2.4.6 </span> Derivations </h5>
-
-<p>A <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-170-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>D</mi><mi>e</mi><mi>r</mi><mi>i</mi><mi>v</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-170">Derivation</script> is an influence chaining one or more
+  <h4><span class="secno">4.4.6 </span> Derivations </h4>
+
+<p>A <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-175-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>D</mi><mi>e</mi><mi>r</mi><mi>i</mi><mi>v</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-175">Derivation</script> is an influence chaining one or more
   generation and use steps.  To model derivations, we introduce an
   auxiliary notion of <em>derivation path</em>.  These paths are of the form </p>
 
-<span class="MathJax_Preview"></span><div class="MathJax_MathML" id="MathJax-Element-171-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><mi>e</mi><mi>n</mi><msub><mi>t</mi><mi>n</mi></msub><mo stretchy="false">⋅</mo><msub><mi>g</mi><mi>n</mi></msub><mo stretchy="false">⋅</mo><mi>a</mi><mi>c</mi><msub><mi>t</mi><mi>n</mi></msub><mo stretchy="false">⋅</mo><msub><mi>u</mi><mi>n</mi></msub><mo stretchy="false">⋅</mo><mi>e</mi><mi>n</mi><msub><mi>t</mi><mrow class="MJX-TeXAtom-ORD"><mi>n</mi><mo stretchy="false">−</mo><mn>1</mn></mrow></msub><mo stretchy="false">⋅</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo stretchy="false">⋅</mo><mi>e</mi><mi>n</mi><msub><mi>t</mi><mn>1</mn></msub><mo stretchy="false">⋅</mo><msub><mi>g</mi><mn>1</mn></msub><mo stretchy="false">⋅</mo><mi>a</mi><mi>c</mi><msub><mi>t</mi><mn>1</mn></msub><mo stretchy="false">⋅</mo><msub><mi>u</mi><mn>1</mn></msub><mo stretchy="false">⋅</mo><mi>e</mi><mi>n</mi><msub><mi>t</mi><mn>0</mn></msub></math></span></span></div><script type="math/tex; mode=display" id="MathJax-Element-171">ent_n\cdot g_n\cdot  act_n\cdot  u_n\cdot  ent_{n-1}\cdot  ...\cdot
+<span class="MathJax_Preview"></span><div class="MathJax_MathML" id="MathJax-Element-176-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><mi>e</mi><mi>n</mi><msub><mi>t</mi><mi>n</mi></msub><mo stretchy="false">⋅</mo><msub><mi>g</mi><mi>n</mi></msub><mo stretchy="false">⋅</mo><mi>a</mi><mi>c</mi><msub><mi>t</mi><mi>n</mi></msub><mo stretchy="false">⋅</mo><msub><mi>u</mi><mi>n</mi></msub><mo stretchy="false">⋅</mo><mi>e</mi><mi>n</mi><msub><mi>t</mi><mrow class="MJX-TeXAtom-ORD"><mi>n</mi><mo stretchy="false">−</mo><mn>1</mn></mrow></msub><mo stretchy="false">⋅</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo stretchy="false">⋅</mo><mi>e</mi><mi>n</mi><msub><mi>t</mi><mn>1</mn></msub><mo stretchy="false">⋅</mo><msub><mi>g</mi><mn>1</mn></msub><mo stretchy="false">⋅</mo><mi>a</mi><mi>c</mi><msub><mi>t</mi><mn>1</mn></msub><mo stretchy="false">⋅</mo><msub><mi>u</mi><mn>1</mn></msub><mo stretchy="false">⋅</mo><mi>e</mi><mi>n</mi><msub><mi>t</mi><mn>0</mn></msub></math></span></span></div><script type="math/tex; mode=display" id="MathJax-Element-176">ent_n\cdot g_n\cdot  act_n\cdot  u_n\cdot  ent_{n-1}\cdot  ...\cdot
 ent_1\cdot  g_1\cdot  act_1\cdot  u_1\cdot  ent_0</script>
 
-<p>where the <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-172-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi><mi>n</mi><msub><mi>t</mi><mi>i</mi></msub></math></span></span></span><script type="math/tex" id="MathJax-Element-172">ent_i</script> are entities, <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-173-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mi>c</mi><msub><mi>t</mi><mi>i</mi></msub></math></span></span></span><script type="math/tex" id="MathJax-Element-173">act_i</script> are activities, <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-174-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>g</mi><mi>i</mi></msub></math></span></span></span><script type="math/tex" id="MathJax-Element-174">g_i</script> are generations, and <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-175-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>u</mi><mi>i</mi></msub></math></span></span></span><script type="math/tex" id="MathJax-Element-175">u_i</script> are usages.
+<p>where the <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-177-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi><mi>n</mi><msub><mi>t</mi><mi>i</mi></msub></math></span></span></span><script type="math/tex" id="MathJax-Element-177">ent_i</script> are entities, <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-178-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mi>c</mi><msub><mi>t</mi><mi>i</mi></msub></math></span></span></span><script type="math/tex" id="MathJax-Element-178">act_i</script> are activities, <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-179-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>g</mi><mi>i</mi></msub></math></span></span></span><script type="math/tex" id="MathJax-Element-179">g_i</script> are generations, and <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-180-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>u</mi><mi>i</mi></msub></math></span></span></span><script type="math/tex" id="MathJax-Element-180">u_i</script> are usages.
 </p>
 <p>Formally, we consider the (regular) language:
 </p>
-<span class="MathJax_Preview"></span><div class="MathJax_MathML" id="MathJax-Element-176-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><mi>D</mi><mi>e</mi><mi>r</mi><mi>i</mi><mi>v</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mi>P</mi><mi>a</mi><mi>t</mi><mi>h</mi><mi>s</mi><mo stretchy="false">=</mo><mi>E</mi><mi>n</mi><mi>t</mi><mi>i</mi><mi>t</mi><mi>i</mi><mi>e</mi><mi>s</mi><mo stretchy="false">⋅</mo><mo stretchy="false">(</mo><mi>G</mi><mi>e</mi><mi>n</mi><mi>e</mi><mi>r</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mi>s</mi><mo stretchy="false">⋅</mo><mi>A</mi><mi>c</mi><mi>t</mi><mi>i</mi><mi>v</mi><mi>i</mi><mi>t</mi><mi>i</mi><mi>e</mi><mi>s</mi><mo stretchy="false">⋅</mo><mi>U</mi><mi>s</mi><mi>a</mi><mi>g</mi><mi>e</mi><mi>s</mi><mo stretchy="false">⋅</mo><mi>E</mi><mi>n</mi><mi>t</mi><mi>i</mi><mi>t</mi><mi>i</mi><mi>e</mi><mi>s</mi><msup><mo stretchy="false">)</mo><mo stretchy="false">+</mo></msup></math></span></span></div><script type="math/tex; mode=display" id="MathJax-Element-176">DerivationPaths = Entities \cdot (Generations \cdot Activities \cdot
+<span class="MathJax_Preview"></span><div class="MathJax_MathML" id="MathJax-Element-181-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><mi>D</mi><mi>e</mi><mi>r</mi><mi>i</mi><mi>v</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mi>P</mi><mi>a</mi><mi>t</mi><mi>h</mi><mi>s</mi><mo stretchy="false">=</mo><mi>E</mi><mi>n</mi><mi>t</mi><mi>i</mi><mi>t</mi><mi>i</mi><mi>e</mi><mi>s</mi><mo stretchy="false">⋅</mo><mo stretchy="false">(</mo><mi>G</mi><mi>e</mi><mi>n</mi><mi>e</mi><mi>r</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mi>s</mi><mo stretchy="false">⋅</mo><mi>A</mi><mi>c</mi><mi>t</mi><mi>i</mi><mi>v</mi><mi>i</mi><mi>t</mi><mi>i</mi><mi>e</mi><mi>s</mi><mo stretchy="false">⋅</mo><mi>U</mi><mi>s</mi><mi>a</mi><mi>g</mi><mi>e</mi><mi>s</mi><mo stretchy="false">⋅</mo><mi>E</mi><mi>n</mi><mi>t</mi><mi>i</mi><mi>t</mi><mi>i</mi><mi>e</mi><mi>s</mi><msup><mo stretchy="false">)</mo><mo stretchy="false">+</mo></msup></math></span></span></div><script type="math/tex; mode=display" id="MathJax-Element-181">DerivationPaths = Entities \cdot (Generations \cdot Activities \cdot
 Usages \cdot Entities)^+</script>
 <p>with the constraints that for each derivation path:
 </p>
 <ul>
-<li>for each substring <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-177-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi><mi>n</mi><mi>t</mi><mo stretchy="false">⋅</mo><mi>g</mi><mo stretchy="false">⋅</mo><mi>a</mi><mi>c</mi><mi>t</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-177">ent\cdot g \cdot act</script> we have <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-178-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mi>e</mi><mi>n</mi><mi>e</mi><mi>r</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>g</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>e</mi><mi>n</mi><mi>t</mi><mo stretchy="false">,</mo><mi>a</mi><mi>c</mi><mi>t</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-178">generated(g) = (ent,act)</script>, and
+<li>for each substring <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-182-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi><mi>n</mi><mi>t</mi><mo stretchy="false">⋅</mo><mi>g</mi><mo stretchy="false">⋅</mo><mi>a</mi><mi>c</mi><mi>t</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-182">ent\cdot g \cdot act</script> we have <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-183-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mi>e</mi><mi>n</mi><mi>e</mi><mi>r</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>g</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>e</mi><mi>n</mi><mi>t</mi><mo stretchy="false">,</mo><mi>a</mi><mi>c</mi><mi>t</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-183">generated(g) = (ent,act)</script>, and
 </li>
-<li>for each substring <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-179-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mi>c</mi><mi>t</mi><mo stretchy="false">⋅</mo><mi>u</mi><mo stretchy="false">⋅</mo><mi>e</mi><mi>n</mi><mi>t</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-179">act \cdot u \cdot ent</script> we have <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-180-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>u</mi><mi>s</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>u</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>a</mi><mi>c</mi><mi>t</mi><mo stretchy="false">,</mo><mi>e</mi><mi>n</mi><mi>t</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-180">used(u) = (act,ent)</script>.
+<li>for each substring <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-184-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mi>c</mi><mi>t</mi><mo stretchy="false">⋅</mo><mi>u</mi><mo stretchy="false">⋅</mo><mi>e</mi><mi>n</mi><mi>t</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-184">act \cdot u \cdot ent</script> we have <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-185-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>u</mi><mi>s</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>u</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>a</mi><mi>c</mi><mi>t</mi><mo stretchy="false">,</mo><mi>e</mi><mi>n</mi><mi>t</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-185">used(u) = (act,ent)</script>.
 </li>
 </ul>
 
 
 <div class="component" id="derivations" data-count="14" data-title="Component 14 (derivations)"><div class="ruleTitle"><a class="internalDFN" href="#derivations">Component 14 (derivations)</a></div>
-<p>  A set <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-181-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>D</mi><mi>e</mi><mi>r</mi><mi>i</mi><mi>v</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mi>s</mi><mo stretchy="false">⊆</mo><mi>I</mi><mi>n</mi><mi>f</mi><mi>l</mi><mi>u</mi><mi>e</mi><mi>n</mi><mi>c</mi><mi>e</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-181">Derivations \subseteq Influences</script> with an associated
-  function <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-182-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi><mi>e</mi><mi>r</mi><mi>i</mi><mi>v</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mi>P</mi><mi>a</mi><mi>t</mi><mi>h</mi><mo stretchy="false">:</mo><mi>D</mi><mi>e</mi><mi>r</mi><mi>i</mi><mi>v</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mi>s</mi><mo stretchy="false">→</mo><mi>D</mi><mi>e</mi><mi>r</mi><mi>i</mi><mi>v</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mi>P</mi><mi>a</mi><mi>t</mi><mi>h</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-182">derivationPath : Derivations \to
+<p>  A set <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-186-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>D</mi><mi>e</mi><mi>r</mi><mi>i</mi><mi>v</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mi>s</mi><mo stretchy="false">⊆</mo><mi>I</mi><mi>n</mi><mi>f</mi><mi>l</mi><mi>u</mi><mi>e</mi><mi>n</mi><mi>c</mi><mi>e</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-186">Derivations \subseteq Influences</script> with an associated
+  function <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-187-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi><mi>e</mi><mi>r</mi><mi>i</mi><mi>v</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mi>P</mi><mi>a</mi><mi>t</mi><mi>h</mi><mo stretchy="false">:</mo><mi>D</mi><mi>e</mi><mi>r</mi><mi>i</mi><mi>v</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mi>s</mi><mo stretchy="false">→</mo><mi>D</mi><mi>e</mi><mi>r</mi><mi>i</mi><mi>v</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mi>P</mi><mi>a</mi><mi>t</mi><mi>h</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-187">derivationPath : Derivations \to
 DerivationPaths</script>  linking each derivation to a derivation path.  </p>
 <p></p>
 </div>
 
 <div class="remark">
   <p>
-  The <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-183-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi><mi>e</mi><mi>r</mi><mi>i</mi><mi>v</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mi>P</mi><mi>a</mi><mi>t</mi><mi>h</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-183">derivationPath</script> function links each <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-184-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi><mo stretchy="false">∈</mo><mi>D</mi><mi>e</mi><mi>r</mi><mi>i</mi><mi>v</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-184"> d \in Derivations</script> to a
+  The <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-188-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi><mi>e</mi><mi>r</mi><mi>i</mi><mi>v</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mi>P</mi><mi>a</mi><mi>t</mi><mi>h</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-188">derivationPath</script> function links each <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-189-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi><mo stretchy="false">∈</mo><mi>D</mi><mi>e</mi><mi>r</mi><mi>i</mi><mi>v</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-189"> d \in Derivations</script> to a
   derivation path.  A derivation has exactly one associated derivation
   path.  However, if the PROV-N statement <span class="name">wasDerivedFrom(e_2,e_1,-,-,-)</span> is asserted in an
-  instance, there may be multiple derivation paths linking <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-185-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>e</mi><mn>2</mn></msub></math></span></span></span><script type="math/tex" id="MathJax-Element-185">e_2</script> to
-  <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-186-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>e</mi><mn>1</mn></msub></math></span></span></span><script type="math/tex" id="MathJax-Element-186">e_1</script>, each corresponding to a different path, identified by different
-  derivations <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-187-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi><mo stretchy="false">∈</mo><mi>D</mi><mi>e</mi><mi>r</mi><mi>i</mi><mi>v</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-187">d \in Derivations</script>.
+  instance, there may be multiple derivation paths linking <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-190-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>e</mi><mn>2</mn></msub></math></span></span></span><script type="math/tex" id="MathJax-Element-190">e_2</script> to
+  <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-191-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>e</mi><mn>1</mn></msub></math></span></span></span><script type="math/tex" id="MathJax-Element-191">e_1</script>, each corresponding to a different path, identified by different
+  derivations <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-192-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi><mo stretchy="false">∈</mo><mi>D</mi><mi>e</mi><mi>r</mi><mi>i</mi><mi>v</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-192">d \in Derivations</script>.
   </p>
 
   <p>A derivation path implies the existence of at least one chained generation
@@ -1702,7 +1668,7 @@
   </p>
 <p>
   The reason why we need paths and not just individual derivation
-  steps is to reflect that <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-188-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>w</mi><mi>a</mi><mi>s</mi><mi>D</mi><mi>e</mi><mi>r</mi><mi>i</mi><mi>v</mi><mi>e</mi><mi>d</mi><mi>F</mi><mi>r</mi><mi>o</mi><mi>m</mi><mo stretchy="false">(</mo><mi>i</mi><mi>d</mi><mo stretchy="false">,</mo><msub><mi>e</mi><mn>2</mn></msub><mo stretchy="false">,</mo><msub><mi>e</mi><mn>1</mn></msub><mo stretchy="false">,</mo><mo stretchy="false">−</mo><mo stretchy="false">,</mo><mo stretchy="false">−</mo><mo stretchy="false">,</mo><mo stretchy="false">−</mo><mo stretchy="false">,</mo><mi>a</mi><mi>t</mi><mi>t</mi><mi>r</mi><mi>s</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-188">wasDerivedFrom(id,e_2,e_1,-,-,-,attrs)</script> formulas can
+  steps is to reflect that <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-193-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>w</mi><mi>a</mi><mi>s</mi><mi>D</mi><mi>e</mi><mi>r</mi><mi>i</mi><mi>v</mi><mi>e</mi><mi>d</mi><mi>F</mi><mi>r</mi><mi>o</mi><mi>m</mi><mo stretchy="false">(</mo><mi>i</mi><mi>d</mi><mo stretchy="false">,</mo><msub><mi>e</mi><mn>2</mn></msub><mo stretchy="false">,</mo><msub><mi>e</mi><mn>1</mn></msub><mo stretchy="false">,</mo><mo stretchy="false">−</mo><mo stretchy="false">,</mo><mo stretchy="false">−</mo><mo stretchy="false">,</mo><mo stretchy="false">−</mo><mo stretchy="false">,</mo><mi>a</mi><mi>t</mi><mi>t</mi><mi>r</mi><mi>s</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-193">wasDerivedFrom(id,e_2,e_1,-,-,-,attrs)</script> formulas can
   represent multiple derivation steps.  However, there is no way to
   express a multi-step derivation path in PROV: any valid PROV
   instance turns out to have a model in which all derivation paths are
@@ -1713,7 +1679,7 @@
 </section>
 
   <section id="additional-axioms">
-  <h3><span class="secno">3.3 </span>Additional axioms</h3>
+  <!--OddPage--><h2><span class="secno">5. </span>Additional axioms</h2>
 
   <p> Above we have stated some properties of the components.  We
   impose some additional properties that relate several components, as
@@ -1723,134 +1689,137 @@
     
   <ol>
     <li id="axiom1">
-    If <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-189-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mi>e</mi><mi>n</mi><mi>e</mi><mi>r</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>g</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>e</mi><mo stretchy="false">,</mo><msub><mi>a</mi><mn>1</mn></msub><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-189">generated(g) = (e,a_1)</script> and <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-190-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>u</mi><mi>s</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>u</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><msub><mi>a</mi><mn>2</mn></msub><mo stretchy="false">,</mo><mi>e</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-190">used(u) = (a_2,e)</script> then there
-    exists <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-191-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi><mo stretchy="false">∈</mo><mi>C</mi><mi>o</mi><mi>m</mi><mi>m</mi><mi>u</mi><mi>n</mi><mi>i</mi><mi>c</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-191">c \in Communications</script> such that <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-192-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi><mi>o</mi><mi>m</mi><mi>m</mi><mi>u</mi><mi>n</mi><mi>i</mi><mi>c</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><msub><mi>a</mi><mn>2</mn></msub><mo stretchy="false">,</mo><msub><mi>a</mi><mn>1</mn></msub><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-192">communicated(c) = (a_2,a_1)</script>.
+    If <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-194-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mi>e</mi><mi>n</mi><mi>e</mi><mi>r</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>g</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>e</mi><mo stretchy="false">,</mo><msub><mi>a</mi><mn>1</mn></msub><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-194">generated(g) = (e,a_1)</script> and <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-195-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>u</mi><mi>s</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>u</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><msub><mi>a</mi><mn>2</mn></msub><mo stretchy="false">,</mo><mi>e</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-195">used(u) = (a_2,e)</script> then there
+    exists <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-196-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi><mo stretchy="false">∈</mo><mi>C</mi><mi>o</mi><mi>m</mi><mi>m</mi><mi>u</mi><mi>n</mi><mi>i</mi><mi>c</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-196">c \in Communications</script> such that <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-197-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi><mi>o</mi><mi>m</mi><mi>m</mi><mi>u</mi><mi>n</mi><mi>i</mi><mi>c</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><msub><mi>a</mi><mn>2</mn></msub><mo stretchy="false">,</mo><msub><mi>a</mi><mn>1</mn></msub><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-197">communicated(c) = (a_2,a_1)</script>.
     </li>
     <li id="axiom2">
-    If <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-193-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi><mi>t</mi><mi>a</mi><mi>r</mi><mi>t</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>s</mi><mi>t</mi><mi>a</mi><mi>r</mi><mi>t</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><msub><mi>a</mi><mn>2</mn></msub><mo stretchy="false">,</mo><mi>e</mi><mo stretchy="false">,</mo><msub><mi>a</mi><mn>1</mn></msub><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-193">started(start) = (a_2,e,a_1)</script> then there exists <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-194-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mi>e</mi><mi>n</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-194">gen</script> such
-    that <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-195-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mi>e</mi><mi>n</mi><mi>e</mi><mi>r</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>g</mi><mi>e</mi><mi>n</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>e</mi><mo stretchy="false">,</mo><msub><mi>a</mi><mn>1</mn></msub><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-195">generated(gen) = (e,a_1)</script>.
+    If <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-198-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi><mo stretchy="false">∈</mo><mi>E</mi><mi>n</mi><mi>t</mi><mi>i</mi><mi>t</mi><mi>i</mi><mi>e</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-198">e \in Entities</script> then there exist <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-199-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mi>e</mi><mi>n</mi><mo stretchy="false">,</mo><mi>i</mi><mi>n</mi><mi>v</mi><mo stretchy="false">,</mo><mi>a</mi><mo stretchy="false">,</mo><msup><mi>a</mi><mo>′</mo></msup></math></span></span></span><script type="math/tex" id="MathJax-Element-199">gen,inv,a,a'</script> such that
+    <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-200-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mi>e</mi><mi>n</mi><mi>e</mi><mi>r</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>g</mi><mi>e</mi><mi>n</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>e</mi><mo stretchy="false">,</mo><mi>a</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-200">generated(gen) = (e,a)</script> and <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-201-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>i</mi><mi>n</mi><mi>v</mi><mi>a</mi><mi>l</mi><mi>i</mi><mi>d</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>i</mi><mi>n</mi><mi>v</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>e</mi><mo stretchy="false">,</mo><msup><mi>a</mi><mo>′</mo></msup><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-201">invalidated(inv) = (e,a')</script>.
     </li>
     <li id="axiom3">
-    If <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-196-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi><mi>n</mi><mi>d</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>e</mi><mi>n</mi><mi>d</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><msub><mi>a</mi><mn>2</mn></msub><mo stretchy="false">,</mo><mi>e</mi><mo stretchy="false">,</mo><msub><mi>a</mi><mn>1</mn></msub><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-196">ended(end) = (a_2,e,a_1)</script> then there exists <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-197-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mi>e</mi><mi>n</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-197">gen</script> such
-    that <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-198-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mi>e</mi><mi>n</mi><mi>e</mi><mi>r</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>g</mi><mi>e</mi><mi>n</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>e</mi><mo stretchy="false">,</mo><msub><mi>a</mi><mn>1</mn></msub><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-198">generated(gen) = (e,a_1)</script>.
+    If <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-202-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi><mi>t</mi><mi>a</mi><mi>r</mi><mi>t</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>s</mi><mi>t</mi><mi>a</mi><mi>r</mi><mi>t</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><msub><mi>a</mi><mn>2</mn></msub><mo stretchy="false">,</mo><mi>e</mi><mo stretchy="false">,</mo><msub><mi>a</mi><mn>1</mn></msub><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-202">started(start) = (a_2,e,a_1)</script> then there exists <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-203-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mi>e</mi><mi>n</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-203">gen</script> such
+    that <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-204-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mi>e</mi><mi>n</mi><mi>e</mi><mi>r</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>g</mi><mi>e</mi><mi>n</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>e</mi><mo stretchy="false">,</mo><msub><mi>a</mi><mn>1</mn></msub><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-204">generated(gen) = (e,a_1)</script>.
     </li>
     <li id="axiom4">
-    If <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-199-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi><mo stretchy="false">∈</mo><mi>D</mi><mi>e</mi><mi>r</mi><mi>i</mi><mi>v</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-199">d \in Derivations</script> and <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-200-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mi>r</mi><mi>o</mi><mi>v</mi><mo stretchy="false">:</mo><mi>R</mi><mi>e</mi><mi>v</mi><mi>i</mi><mi>s</mi><mi>i</mi><mi>o</mi><mi>n</mi><mo stretchy="false">∈</mo><mi>v</mi><mi>a</mi><mi>l</mi><mi>u</mi><mi>e</mi><mo stretchy="false">(</mo><mi>d</mi><mo stretchy="false">,</mo><mi>p</mi><mi>r</mi><mi>o</mi><mi>v</mi><mo stretchy="false">:</mo><mi>t</mi><mi>y</mi><mi>p</mi><mi>e</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-200">prov:Revision \in
-    value(d,prov:type)</script> and <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-201-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi><mi>e</mi><mi>r</mi><mi>i</mi><mi>v</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mi>P</mi><mi>a</mi><mi>t</mi><mi>h</mi><mo stretchy="false">(</mo><mi>d</mi><mi>e</mi><mi>r</mi><mi>i</mi><mi>v</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><msub><mi>e</mi><mn>2</mn></msub><mo stretchy="false">⋅</mo><mi>w</mi><mo stretchy="false">⋅</mo><msub><mi>e</mi><mn>1</mn></msub></math></span></span></span><script type="math/tex" id="MathJax-Element-201">derivationPath(deriv) = e_2 \cdot w \cdot
-    e_1</script> then <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-202-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mi>h</mi><mi>i</mi><mi>n</mi><mi>g</mi><mi>O</mi><mi>f</mi><mo stretchy="false">(</mo><msub><mi>e</mi><mn>1</mn></msub><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mi>t</mi><mi>h</mi><mi>i</mi><mi>n</mi><mi>g</mi><mi>O</mi><mi>f</mi><mo stretchy="false">(</mo><msub><mi>e</mi><mn>2</mn></msub><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-202">thingOf(e_1) = thingOf(e_2)</script>.
+    If <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-205-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi><mi>n</mi><mi>d</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>e</mi><mi>n</mi><mi>d</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><msub><mi>a</mi><mn>2</mn></msub><mo stretchy="false">,</mo><mi>e</mi><mo stretchy="false">,</mo><msub><mi>a</mi><mn>1</mn></msub><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-205">ended(end) = (a_2,e,a_1)</script> then there exists <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-206-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mi>e</mi><mi>n</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-206">gen</script> such
+    that <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-207-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mi>e</mi><mi>n</mi><mi>e</mi><mi>r</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>g</mi><mi>e</mi><mi>n</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>e</mi><mo stretchy="false">,</mo><msub><mi>a</mi><mn>1</mn></msub><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-207">generated(gen) = (e,a_1)</script>.
     </li>
     <li id="axiom5">
-    If <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-203-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mi>t</mi><mi>t</mi><mi>r</mi><mi>i</mi><mi>b</mi><mi>u</mi><mi>t</mi><mi>e</mi><mi>d</mi><mi>T</mi><mi>o</mi><mo stretchy="false">(</mo><mi>a</mi><mi>t</mi><mi>t</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>e</mi><mo stretchy="false">,</mo><mi>a</mi><mi>g</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-203">attributedTo(att) = (e,ag)</script> then there exist <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-204-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mi>e</mi><mi>n</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-204">gen</script> and <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-205-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mi>s</mi><mi>s</mi><mi>o</mi><mi>c</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-205">assoc</script>
-    such that <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-206-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mi>e</mi><mi>n</mi><mi>e</mi><mi>r</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>g</mi><mi>e</mi><mi>n</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>e</mi><mo stretchy="false">,</mo><mi>a</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-206">generated(gen) = (e,a)</script> and <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-207-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mi>s</mi><mi>s</mi><mi>o</mi><mi>c</mi><mi>i</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>d</mi><mi>W</mi><mi>i</mi><mi>t</mi><mi>h</mi><mo stretchy="false">(</mo><mi>a</mi><mi>s</mi><mi>s</mi><mi>o</mi><mi>c</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>a</mi><mo stretchy="false">,</mo><mi>a</mi><mi>g</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-207">associatedWith(assoc) = (a,ag)</script>.
+    If <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-208-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi><mo stretchy="false">∈</mo><mi>D</mi><mi>e</mi><mi>r</mi><mi>i</mi><mi>v</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-208">d \in Derivations</script> and <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-209-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mi>r</mi><mi>o</mi><mi>v</mi><mo stretchy="false">:</mo><mi>R</mi><mi>e</mi><mi>v</mi><mi>i</mi><mi>s</mi><mi>i</mi><mi>o</mi><mi>n</mi><mo stretchy="false">∈</mo><mi>v</mi><mi>a</mi><mi>l</mi><mi>u</mi><mi>e</mi><mo stretchy="false">(</mo><mi>d</mi><mo stretchy="false">,</mo><mi>p</mi><mi>r</mi><mi>o</mi><mi>v</mi><mo stretchy="false">:</mo><mi>t</mi><mi>y</mi><mi>p</mi><mi>e</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-209">prov:Revision \in
+    value(d,prov:type)</script> and <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-210-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi><mi>e</mi><mi>r</mi><mi>i</mi><mi>v</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mi>P</mi><mi>a</mi><mi>t</mi><mi>h</mi><mo stretchy="false">(</mo><mi>d</mi><mi>e</mi><mi>r</mi><mi>i</mi><mi>v</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><msub><mi>e</mi><mn>2</mn></msub><mo stretchy="false">⋅</mo><mi>w</mi><mo stretchy="false">⋅</mo><msub><mi>e</mi><mn>1</mn></msub></math></span></span></span><script type="math/tex" id="MathJax-Element-210">derivationPath(deriv) = e_2 \cdot w \cdot
+    e_1</script> then <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-211-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mi>h</mi><mi>i</mi><mi>n</mi><mi>g</mi><mi>O</mi><mi>f</mi><mo stretchy="false">(</mo><msub><mi>e</mi><mn>1</mn></msub><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mi>t</mi><mi>h</mi><mi>i</mi><mi>n</mi><mi>g</mi><mi>O</mi><mi>f</mi><mo stretchy="false">(</mo><msub><mi>e</mi><mn>2</mn></msub><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-211">thingOf(e_1) = thingOf(e_2)</script>.
     </li>
     <li id="axiom6">
-    If <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-208-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mi>c</mi><mi>t</mi><mi>e</mi><mi>d</mi><mi>F</mi><mi>o</mi><mi>r</mi><mo stretchy="false">(</mo><mi>d</mi><mi>e</mi><mi>l</mi><mi>e</mi><mi>g</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>a</mi><msub><mi>g</mi><mn>2</mn></msub><mo stretchy="false">,</mo><mi>a</mi><msub><mi>g</mi><mn>1</mn></msub><mo stretchy="false">,</mo><mi>a</mi><mi>c</mi><mi>t</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-208">actedFor(deleg) = (ag_2,ag_1,act)</script> then there exist
-    <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-209-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mi>s</mi><mi>s</mi><mi>o</mi><msub><mi>c</mi><mn>1</mn></msub><mo stretchy="false">,</mo><mi>a</mi><mi>s</mi><mi>s</mi><mi>o</mi><msub><mi>c</mi><mn>2</mn></msub><mo stretchy="false">,</mo><mi>p</mi><msub><mi>l</mi><mn>1</mn></msub><mo stretchy="false">,</mo><mi>p</mi><msub><mi>l</mi><mn>2</mn></msub></math></span></span></span><script type="math/tex" id="MathJax-Element-209">assoc_1,assoc_2,pl_1,pl_2</script> such that <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-210-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mi>s</mi><mi>s</mi><mi>o</mi><mi>c</mi><mi>i</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>d</mi><mi>W</mi><mi>i</mi><mi>t</mi><mi>h</mi><mo stretchy="false">(</mo><mi>a</mi><mi>s</mi><mi>s</mi><mi>o</mi><msub><mi>c</mi><mn>1</mn></msub><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>a</mi><msub><mi>g</mi><mn>1</mn></msub><mo stretchy="false">,</mo><mi>a</mi><mi>c</mi><mi>t</mi><mo stretchy="false">,</mo><mi>p</mi><msub><mi>l</mi><mn>1</mn></msub><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-210">associatedWith(assoc_1) = (ag_1,act,pl_1)</script>
-    and <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-211-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mi>s</mi><mi>s</mi><mi>o</mi><mi>c</mi><mi>i</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>d</mi><mi>W</mi><mi>i</mi><mi>t</mi><mi>h</mi><mo stretchy="false">(</mo><mi>a</mi><mi>s</mi><mi>s</mi><mi>o</mi><msub><mi>c</mi><mn>2</mn></msub><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>a</mi><msub><mi>g</mi><mn>2</mn></msub><mo stretchy="false">,</mo><mi>a</mi><mi>c</mi><mi>t</mi><mo stretchy="false">,</mo><mi>p</mi><msub><mi>l</mi><mn>2</mn></msub><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-211">associatedWith(assoc_2) = (ag_2,act,pl_2)</script>.
+    If <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-212-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mi>t</mi><mi>t</mi><mi>r</mi><mi>i</mi><mi>b</mi><mi>u</mi><mi>t</mi><mi>e</mi><mi>d</mi><mi>T</mi><mi>o</mi><mo stretchy="false">(</mo><mi>a</mi><mi>t</mi><mi>t</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>e</mi><mo stretchy="false">,</mo><mi>a</mi><mi>g</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-212">attributedTo(att) = (e,ag)</script> then there exist <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-213-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mi>e</mi><mi>n</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-213">gen</script> and <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-214-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mi>s</mi><mi>s</mi><mi>o</mi><mi>c</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-214">assoc</script>
+    such that <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-215-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mi>e</mi><mi>n</mi><mi>e</mi><mi>r</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>g</mi><mi>e</mi><mi>n</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>e</mi><mo stretchy="false">,</mo><mi>a</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-215">generated(gen) = (e,a)</script> and <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-216-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mi>s</mi><mi>s</mi><mi>o</mi><mi>c</mi><mi>i</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>d</mi><mi>W</mi><mi>i</mi><mi>t</mi><mi>h</mi><mo stretchy="false">(</mo><mi>a</mi><mi>s</mi><mi>s</mi><mi>o</mi><mi>c</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>a</mi><mo stretchy="false">,</mo><mi>a</mi><mi>g</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-216">associatedWith(assoc) = (a,ag)</script>.
     </li>
     <li id="axiom7">
-    If <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-212-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mi>e</mi><mi>n</mi><mi>e</mi><mi>r</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>i</mi><mi>d</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>e</mi><mo stretchy="false">,</mo><mi>a</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-212">generated(id) = (e,a)</script> then <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-213-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>i</mi><mi>n</mi><mi>f</mi><mi>l</mi><mi>u</mi><mi>e</mi><mi>n</mi><mi>c</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>i</mi><mi>d</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>e</mi><mo stretchy="false">,</mo><mi>a</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-213">influenced(id) = (e,a)</script>.
+    If <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-217-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mi>c</mi><mi>t</mi><mi>e</mi><mi>d</mi><mi>F</mi><mi>o</mi><mi>r</mi><mo stretchy="false">(</mo><mi>d</mi><mi>e</mi><mi>l</mi><mi>e</mi><mi>g</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>a</mi><msub><mi>g</mi><mn>2</mn></msub><mo stretchy="false">,</mo><mi>a</mi><msub><mi>g</mi><mn>1</mn></msub><mo stretchy="false">,</mo><mi>a</mi><mi>c</mi><mi>t</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-217">actedFor(deleg) = (ag_2,ag_1,act)</script> then there exist
+    <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-218-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mi>s</mi><mi>s</mi><mi>o</mi><msub><mi>c</mi><mn>1</mn></msub><mo stretchy="false">,</mo><mi>a</mi><mi>s</mi><mi>s</mi><mi>o</mi><msub><mi>c</mi><mn>2</mn></msub><mo stretchy="false">,</mo><mi>p</mi><msub><mi>l</mi><mn>1</mn></msub><mo stretchy="false">,</mo><mi>p</mi><msub><mi>l</mi><mn>2</mn></msub></math></span></span></span><script type="math/tex" id="MathJax-Element-218">assoc_1,assoc_2,pl_1,pl_2</script> such that <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-219-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mi>s</mi><mi>s</mi><mi>o</mi><mi>c</mi><mi>i</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>d</mi><mi>W</mi><mi>i</mi><mi>t</mi><mi>h</mi><mo stretchy="false">(</mo><mi>a</mi><mi>s</mi><mi>s</mi><mi>o</mi><msub><mi>c</mi><mn>1</mn></msub><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>a</mi><msub><mi>g</mi><mn>1</mn></msub><mo stretchy="false">,</mo><mi>a</mi><mi>c</mi><mi>t</mi><mo stretchy="false">,</mo><mi>p</mi><msub><mi>l</mi><mn>1</mn></msub><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-219">associatedWith(assoc_1) = (ag_1,act,pl_1)</script>
+    and <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-220-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mi>s</mi><mi>s</mi><mi>o</mi><mi>c</mi><mi>i</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>d</mi><mi>W</mi><mi>i</mi><mi>t</mi><mi>h</mi><mo stretchy="false">(</mo><mi>a</mi><mi>s</mi><mi>s</mi><mi>o</mi><msub><mi>c</mi><mn>2</mn></msub><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>a</mi><msub><mi>g</mi><mn>2</mn></msub><mo stretchy="false">,</mo><mi>a</mi><mi>c</mi><mi>t</mi><mo stretchy="false">,</mo><mi>p</mi><msub><mi>l</mi><mn>2</mn></msub><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-220">associatedWith(assoc_2) = (ag_2,act,pl_2)</script>.
     </li>
     <li id="axiom8">
-        If <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-214-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>u</mi><mi>s</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>i</mi><mi>d</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>e</mi><mo stretchy="false">,</mo><mi>a</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-214">used(id) = (e,a)</script> then <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-215-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>i</mi><mi>n</mi><mi>f</mi><mi>l</mi><mi>u</mi><mi>e</mi><mi>n</mi><mi>c</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>i</mi><mi>d</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>e</mi><mo stretchy="false">,</mo><mi>a</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-215">influenced(id) = (e,a)</script>.
+    If <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-221-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mi>e</mi><mi>n</mi><mi>e</mi><mi>r</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>i</mi><mi>d</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>e</mi><mo stretchy="false">,</mo><mi>a</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-221">generated(id) = (e,a)</script> then <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-222-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>i</mi><mi>n</mi><mi>f</mi><mi>l</mi><mi>u</mi><mi>e</mi><mi>n</mi><mi>c</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>i</mi><mi>d</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>e</mi><mo stretchy="false">,</mo><mi>a</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-222">influenced(id) = (e,a)</script>.
     </li>
     <li id="axiom9">
-            If <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-216-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi><mi>o</mi><mi>m</mi><mi>m</mi><mi>u</mi><mi>n</mi><mi>i</mi><mi>c</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>i</mi><mi>d</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><msub><mi>a</mi><mn>2</mn></msub><mo stretchy="false">,</mo><msub><mi>a</mi><mn>1</mn></msub><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-216">communicated(id) = (a_2,a_1)</script> then <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-217-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>i</mi><mi>n</mi><mi>f</mi><mi>l</mi><mi>u</mi><mi>e</mi><mi>n</mi><mi>c</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>i</mi><mi>d</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><msub><mi>a</mi><mn>2</mn></msub><mo stretchy="false">,</mo><msub><mi>a</mi><mn>1</mn></msub><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-217">influenced(id) = (a_2,a_1)</script>.
+        If <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-223-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>u</mi><mi>s</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>i</mi><mi>d</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>e</mi><mo stretchy="false">,</mo><mi>a</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-223">used(id) = (e,a)</script> then <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-224-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>i</mi><mi>n</mi><mi>f</mi><mi>l</mi><mi>u</mi><mi>e</mi><mi>n</mi><mi>c</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>i</mi><mi>d</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>e</mi><mo stretchy="false">,</mo><mi>a</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-224">influenced(id) = (e,a)</script>.
     </li>
     <li id="axiom10">
-     If <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-218-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi><mi>t</mi><mi>a</mi><mi>r</mi><mi>t</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>i</mi><mi>d</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><msub><mi>a</mi><mn>2</mn></msub><mo stretchy="false">,</mo><mi>e</mi><mo stretchy="false">,</mo><msub><mi>a</mi><mn>1</mn></msub><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-218">started(id) = (a_2,e,a_1)</script> then <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-219-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>i</mi><mi>n</mi><mi>f</mi><mi>l</mi><mi>u</mi><mi>e</mi><mi>n</mi><mi>c</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>i</mi><mi>d</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><msub><mi>a</mi><mn>2</mn></msub><mo stretchy="false">,</mo><mi>e</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-219">influenced(id) = (a_2,e)</script>.
+            If <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-225-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi><mi>o</mi><mi>m</mi><mi>m</mi><mi>u</mi><mi>n</mi><mi>i</mi><mi>c</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>i</mi><mi>d</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><msub><mi>a</mi><mn>2</mn></msub><mo stretchy="false">,</mo><msub><mi>a</mi><mn>1</mn></msub><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-225">communicated(id) = (a_2,a_1)</script> then <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-226-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>i</mi><mi>n</mi><mi>f</mi><mi>l</mi><mi>u</mi><mi>e</mi><mi>n</mi><mi>c</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>i</mi><mi>d</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><msub><mi>a</mi><mn>2</mn></msub><mo stretchy="false">,</mo><msub><mi>a</mi><mn>1</mn></msub><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-226">influenced(id) = (a_2,a_1)</script>.
     </li>
     <li id="axiom11">
-         If <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-220-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi><mi>n</mi><mi>d</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>i</mi><mi>d</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><msub><mi>a</mi><mn>2</mn></msub><mo stretchy="false">,</mo><mi>e</mi><mo stretchy="false">,</mo><msub><mi>a</mi><mn>1</mn></msub><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-220">ended(id) = (a_2,e,a_1)</script> then <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-221-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>i</mi><mi>n</mi><mi>f</mi><mi>l</mi><mi>u</mi><mi>e</mi><mi>n</mi><mi>c</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>i</mi><mi>d</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><msub><mi>a</mi><mn>2</mn></msub><mo stretchy="false">,</mo><mi>e</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-221">influenced(id) = (a_2,e)</script>.
+     If <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-227-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi><mi>t</mi><mi>a</mi><mi>r</mi><mi>t</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>i</mi><mi>d</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><msub><mi>a</mi><mn>2</mn></msub><mo stretchy="false">,</mo><mi>e</mi><mo stretchy="false">,</mo><msub><mi>a</mi><mn>1</mn></msub><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-227">started(id) = (a_2,e,a_1)</script> then <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-228-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>i</mi><mi>n</mi><mi>f</mi><mi>l</mi><mi>u</mi><mi>e</mi><mi>n</mi><mi>c</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>i</mi><mi>d</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><msub><mi>a</mi><mn>2</mn></msub><mo stretchy="false">,</mo><mi>e</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-228">influenced(id) = (a_2,e)</script>.
     </li>
     <li id="axiom12">
-    If <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-222-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>i</mi><mi>n</mi><mi>v</mi><mi>a</mi><mi>l</mi><mi>i</mi><mi>d</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>i</mi><mi>d</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>e</mi><mo stretchy="false">,</mo><mi>a</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-222">invalidated(id) = (e,a)</script> then <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-223-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>i</mi><mi>n</mi><mi>f</mi><mi>l</mi><mi>u</mi><mi>e</mi><mi>n</mi><mi>c</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>i</mi><mi>d</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>e</mi><mo stretchy="false">,</mo><mi>a</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-223">influenced(id) = (e,a)</script>.
+         If <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-229-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi><mi>n</mi><mi>d</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>i</mi><mi>d</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><msub><mi>a</mi><mn>2</mn></msub><mo stretchy="false">,</mo><mi>e</mi><mo stretchy="false">,</mo><msub><mi>a</mi><mn>1</mn></msub><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-229">ended(id) = (a_2,e,a_1)</script> then <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-230-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>i</mi><mi>n</mi><mi>f</mi><mi>l</mi><mi>u</mi><mi>e</mi><mi>n</mi><mi>c</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>i</mi><mi>d</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><msub><mi>a</mi><mn>2</mn></msub><mo stretchy="false">,</mo><mi>e</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-230">influenced(id) = (a_2,e)</script>.
     </li>
     <li id="axiom13">
-    If <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-224-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi><mi>e</mi><mi>r</mi><mi>i</mi><mi>v</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mi>P</mi><mi>a</mi><mi>t</mi><mi>h</mi><mo stretchy="false">(</mo><mi>i</mi><mi>d</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><msub><mi>e</mi><mn>2</mn></msub><mo stretchy="false">⋅</mo><mi>w</mi><mo stretchy="false">⋅</mo><msub><mi>e</mi><mn>1</mn></msub></math></span></span></span><script type="math/tex" id="MathJax-Element-224">derivationPath(id) = e_2 \cdot w \cdot e_1</script> then
-    <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-225-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>i</mi><mi>n</mi><mi>f</mi><mi>l</mi><mi>u</mi><mi>e</mi><mi>n</mi><mi>c</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>i</mi><mi>d</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><msub><mi>e</mi><mn>2</mn></msub><mo stretchy="false">,</mo><msub><mi>e</mi><mn>1</mn></msub><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-225">influenced(id) = (e_2,e_1)</script>.
+    If <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-231-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>i</mi><mi>n</mi><mi>v</mi><mi>a</mi><mi>l</mi><mi>i</mi><mi>d</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>i</mi><mi>d</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>e</mi><mo stretchy="false">,</mo><mi>a</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-231">invalidated(id) = (e,a)</script> then <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-232-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>i</mi><mi>n</mi><mi>f</mi><mi>l</mi><mi>u</mi><mi>e</mi><mi>n</mi><mi>c</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>i</mi><mi>d</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>e</mi><mo stretchy="false">,</mo><mi>a</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-232">influenced(id) = (e,a)</script>.
     </li>
     <li id="axiom14">
-    If <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-226-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mi>t</mi><mi>t</mi><mi>r</mi><mi>i</mi><mi>b</mi><mi>u</mi><mi>t</mi><mi>e</mi><mi>d</mi><mi>T</mi><mi>o</mi><mo stretchy="false">(</mo><mi>i</mi><mi>d</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>e</mi><mo stretchy="false">,</mo><mi>a</mi><mi>g</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-226">attributedTo(id) = (e,ag)</script> then <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-227-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>i</mi><mi>n</mi><mi>f</mi><mi>l</mi><mi>u</mi><mi>e</mi><mi>n</mi><mi>c</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>i</mi><mi>d</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>e</mi><mo stretchy="false">,</mo><mi>a</mi><mi>g</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-227">influenced(id) = (e,ag)</script>.
+    If <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-233-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi><mi>e</mi><mi>r</mi><mi>i</mi><mi>v</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mi>P</mi><mi>a</mi><mi>t</mi><mi>h</mi><mo stretchy="false">(</mo><mi>i</mi><mi>d</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><msub><mi>e</mi><mn>2</mn></msub><mo stretchy="false">⋅</mo><mi>w</mi><mo stretchy="false">⋅</mo><msub><mi>e</mi><mn>1</mn></msub></math></span></span></span><script type="math/tex" id="MathJax-Element-233">derivationPath(id) = e_2 \cdot w \cdot e_1</script> then
+    <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-234-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>i</mi><mi>n</mi><mi>f</mi><mi>l</mi><mi>u</mi><mi>e</mi><mi>n</mi><mi>c</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>i</mi><mi>d</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><msub><mi>e</mi><mn>2</mn></msub><mo stretchy="false">,</mo><msub><mi>e</mi><mn>1</mn></msub><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-234">influenced(id) = (e_2,e_1)</script>.
     </li>
     <li id="axiom15">
-    If <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-228-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mi>s</mi><mi>s</mi><mi>o</mi><mi>c</mi><mi>i</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>d</mi><mi>W</mi><mi>i</mi><mi>t</mi><mi>h</mi><mo stretchy="false">(</mo><mi>i</mi><mi>d</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>a</mi><mo stretchy="false">,</mo><mi>a</mi><mi>g</mi><mo stretchy="false">,</mo><mi>p</mi><mi>l</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-228">associatedWith(id) = (a,ag,pl)</script> then <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-229-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>i</mi><mi>n</mi><mi>f</mi><mi>l</mi><mi>u</mi><mi>e</mi><mi>n</mi><mi>c</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>i</mi><mi>d</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>a</mi><mo stretchy="false">,</mo><mi>a</mi><mi>g</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-229">influenced(id) = (a,ag)</script>.
+    If <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-235-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mi>t</mi><mi>t</mi><mi>r</mi><mi>i</mi><mi>b</mi><mi>u</mi><mi>t</mi><mi>e</mi><mi>d</mi><mi>T</mi><mi>o</mi><mo stretchy="false">(</mo><mi>i</mi><mi>d</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>e</mi><mo stretchy="false">,</mo><mi>a</mi><mi>g</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-235">attributedTo(id) = (e,ag)</script> then <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-236-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>i</mi><mi>n</mi><mi>f</mi><mi>l</mi><mi>u</mi><mi>e</mi><mi>n</mi><mi>c</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>i</mi><mi>d</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>e</mi><mo stretchy="false">,</mo><mi>a</mi><mi>g</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-236">influenced(id) = (e,ag)</script>.
     </li>
     <li id="axiom16">
-    If <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-230-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mi>c</mi><mi>t</mi><mi>e</mi><mi>d</mi><mi>F</mi><mi>o</mi><mi>r</mi><mo stretchy="false">(</mo><mi>i</mi><mi>d</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>a</mi><msub><mi>g</mi><mn>2</mn></msub><mo stretchy="false">,</mo><mi>a</mi><msub><mi>g</mi><mn>1</mn></msub><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-230">actedFor(id) = (ag_2,ag_1)</script> then <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-231-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>i</mi><mi>n</mi><mi>f</mi><mi>l</mi><mi>u</mi><mi>e</mi><mi>n</mi><mi>c</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>i</mi><mi>d</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>a</mi><msub><mi>g</mi><mn>2</mn></msub><mo stretchy="false">,</mo><mi>a</mi><msub><mi>g</mi><mn>1</mn></msub><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-231">influenced(id) = (ag_2,ag_1)</script>.
+    If <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-237-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mi>s</mi><mi>s</mi><mi>o</mi><mi>c</mi><mi>i</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>d</mi><mi>W</mi><mi>i</mi><mi>t</mi><mi>h</mi><mo stretchy="false">(</mo><mi>i</mi><mi>d</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>a</mi><mo stretchy="false">,</mo><mi>a</mi><mi>g</mi><mo stretchy="false">,</mo><mi>p</mi><mi>l</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-237">associatedWith(id) = (a,ag,pl)</script> then <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-238-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>i</mi><mi>n</mi><mi>f</mi><mi>l</mi><mi>u</mi><mi>e</mi><mi>n</mi><mi>c</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>i</mi><mi>d</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>a</mi><mo stretchy="false">,</mo><mi>a</mi><mi>g</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-238">influenced(id) = (a,ag)</script>.
     </li>
     <li id="axiom17">
-    If <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-232-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mi>e</mi><mi>n</mi><mi>e</mi><mi>r</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>g</mi><mi>e</mi><mi>n</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>e</mi><mo stretchy="false">,</mo><mi>a</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mi>g</mi><mi>e</mi><mi>n</mi><mi>e</mi><mi>r</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>g</mi><mi>e</mi><msup><mi>n</mi><mo>′</mo></msup><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-232">generated(gen) = (e,a) = generated(gen')</script> then <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-233-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mi>e</mi><mi>n</mi><mo stretchy="false">=</mo><mi>g</mi><mi>e</mi><msup><mi>n</mi><mo>′</mo></msup></math></span></span></span><script type="math/tex" id="MathJax-Element-233">gen = gen'</script>.
+    If <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-239-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mi>c</mi><mi>t</mi><mi>e</mi><mi>d</mi><mi>F</mi><mi>o</mi><mi>r</mi><mo stretchy="false">(</mo><mi>i</mi><mi>d</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>a</mi><msub><mi>g</mi><mn>2</mn></msub><mo stretchy="false">,</mo><mi>a</mi><msub><mi>g</mi><mn>1</mn></msub><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-239">actedFor(id) = (ag_2,ag_1)</script> then <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-240-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>i</mi><mi>n</mi><mi>f</mi><mi>l</mi><mi>u</mi><mi>e</mi><mi>n</mi><mi>c</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>i</mi><mi>d</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>a</mi><msub><mi>g</mi><mn>2</mn></msub><mo stretchy="false">,</mo><mi>a</mi><msub><mi>g</mi><mn>1</mn></msub><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-240">influenced(id) = (ag_2,ag_1)</script>.
     </li>
     <li id="axiom18">
-    If <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-234-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>i</mi><mi>n</mi><mi>v</mi><mi>a</mi><mi>l</mi><mi>i</mi><mi>d</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>i</mi><mi>n</mi><mi>v</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>e</mi><mo stretchy="false">,</mo><mi>a</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mi>i</mi><mi>n</mi><mi>v</mi><mi>a</mi><mi>l</mi><mi>i</mi><mi>d</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>i</mi><mi>n</mi><msup><mi>v</mi><mo>′</mo></msup><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-234">invalidated(inv) = (e,a) = invalidated(inv')</script> then <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-235-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>i</mi><mi>n</mi><mi>v</mi><mo stretchy="false">=</mo><mi>i</mi><mi>n</mi><msup><mi>v</mi><mo>′</mo></msup></math></span></span></span><script type="math/tex" id="MathJax-Element-235">inv=inv'</script>.
+    If <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-241-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mi>e</mi><mi>n</mi><mi>e</mi><mi>r</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>g</mi><mi>e</mi><mi>n</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>e</mi><mo stretchy="false">,</mo><mi>a</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mi>g</mi><mi>e</mi><mi>n</mi><mi>e</mi><mi>r</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>g</mi><mi>e</mi><msup><mi>n</mi><mo>′</mo></msup><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-241">generated(gen) = (e,a) = generated(gen')</script> then <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-242-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mi>e</mi><mi>n</mi><mo stretchy="false">=</mo><mi>g</mi><mi>e</mi><msup><mi>n</mi><mo>′</mo></msup></math></span></span></span><script type="math/tex" id="MathJax-Element-242">gen = gen'</script>.
     </li>
     <li id="axiom19">
-    If <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-236-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi><mi>t</mi><mi>a</mi><mi>r</mi><mi>t</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>s</mi><mi>t</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>a</mi><mo stretchy="false">,</mo><msub><mi>e</mi><mn>1</mn></msub><mo stretchy="false">,</mo><msup><mi>a</mi><mo>′</mo></msup><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-236">started(st) = (a,e_1,a')</script> and <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-237-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi><mi>t</mi><mi>a</mi><mi>r</mi><mi>t</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>s</mi><msup><mi>t</mi><mo>′</mo></msup><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>a</mi><mo stretchy="false">,</mo><msub><mi>e</mi><mn>2</mn></msub><mo stretchy="false">,</mo><msup><mi>a</mi><mo>′</mo></msup><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-237">started(st') = (a,e_2,a')</script> then <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-238-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi><mi>t</mi><mo stretchy="false">=</mo><mi>s</mi><msup><mi>t</mi><mo>′</mo></msup></math></span></span></span><script type="math/tex" id="MathJax-Element-238">st=st'</script>.
+    If <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-243-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>i</mi><mi>n</mi><mi>v</mi><mi>a</mi><mi>l</mi><mi>i</mi><mi>d</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>i</mi><mi>n</mi><mi>v</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>e</mi><mo stretchy="false">,</mo><mi>a</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mi>i</mi><mi>n</mi><mi>v</mi><mi>a</mi><mi>l</mi><mi>i</mi><mi>d</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>i</mi><mi>n</mi><msup><mi>v</mi><mo>′</mo></msup><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-243">invalidated(inv) = (e,a) = invalidated(inv')</script> then <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-244-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>i</mi><mi>n</mi><mi>v</mi><mo stretchy="false">=</mo><mi>i</mi><mi>n</mi><msup><mi>v</mi><mo>′</mo></msup></math></span></span></span><script type="math/tex" id="MathJax-Element-244">inv=inv'</script>.
     </li>
     <li id="axiom20">
-    If <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-239-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi><mi>n</mi><mi>d</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>e</mi><mi>n</mi><mi>d</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>a</mi><mo stretchy="false">,</mo><msub><mi>e</mi><mn>1</mn></msub><mo stretchy="false">,</mo><msup><mi>a</mi><mo>′</mo></msup><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-239">ended(end) = (a,e_1,a')</script> and <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-240-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi><mi>n</mi><mi>d</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>e</mi><mi>n</mi><msup><mi>d</mi><mo>′</mo></msup><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>a</mi><mo stretchy="false">,</mo><msub><mi>e</mi><mn>2</mn></msub><mo stretchy="false">,</mo><msup><mi>a</mi><mo>′</mo></msup><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-240">ended(end') = (a,e_2,a')</script> then <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-241-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi><mi>n</mi><mi>d</mi><mo stretchy="false">=</mo><mi>e</mi><mi>n</mi><msup><mi>d</mi><mo>′</mo></msup></math></span></span></span><script type="math/tex" id="MathJax-Element-241">end=end'</script>.
+    If <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-245-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi><mi>t</mi><mi>a</mi><mi>r</mi><mi>t</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>s</mi><mi>t</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>a</mi><mo stretchy="false">,</mo><msub><mi>e</mi><mn>1</mn></msub><mo stretchy="false">,</mo><msup><mi>a</mi><mo>′</mo></msup><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-245">started(st) = (a,e_1,a')</script> and <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-246-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi><mi>t</mi><mi>a</mi><mi>r</mi><mi>t</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>s</mi><msup><mi>t</mi><mo>′</mo></msup><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>a</mi><mo stretchy="false">,</mo><msub><mi>e</mi><mn>2</mn></msub><mo stretchy="false">,</mo><msup><mi>a</mi><mo>′</mo></msup><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-246">started(st') = (a,e_2,a')</script> then <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-247-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi><mi>t</mi><mo stretchy="false">=</mo><mi>s</mi><msup><mi>t</mi><mo>′</mo></msup></math></span></span></span><script type="math/tex" id="MathJax-Element-247">st=st'</script>.
     </li>
     <li id="axiom21">
-    If <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-242-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi><mi>t</mi><mi>a</mi><mi>r</mi><mi>t</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>s</mi><mi>t</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>a</mi><mo stretchy="false">,</mo><mi>e</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-242">started(st) = (a,e)</script> then <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-243-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi><mi>t</mi><mo stretchy="false">⪯</mo><mi>e</mi><mi>v</mi><mi>t</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-243">st \preceq evt</script> for all <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-244-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi><mi>v</mi><mi>t</mi><mo stretchy="false">∈</mo><mi>e</mi><mi>v</mi><mi>e</mi><mi>n</mi><mi>t</mi><mi>s</mi><mo stretchy="false">(</mo><mi>a</mi><mo stretchy="false">)</mo><mo stretchy="false">−</mo><mi>I</mi><mi>n</mi><mi>v</mi><mi>a</mi><mi>l</mi><mi>i</mi><mi>d</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-244">evt \in
-    events(a) - Invalidations</script>.
+    If <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-248-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi><mi>n</mi><mi>d</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>e</mi><mi>n</mi><mi>d</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>a</mi><mo stretchy="false">,</mo><msub><mi>e</mi><mn>1</mn></msub><mo stretchy="false">,</mo><msup><mi>a</mi><mo>′</mo></msup><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-248">ended(end) = (a,e_1,a')</script> and <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-249-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi><mi>n</mi><mi>d</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>e</mi><mi>n</mi><msup><mi>d</mi><mo>′</mo></msup><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>a</mi><mo stretchy="false">,</mo><msub><mi>e</mi><mn>2</mn></msub><mo stretchy="false">,</mo><msup><mi>a</mi><mo>′</mo></msup><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-249">ended(end') = (a,e_2,a')</script> then <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-250-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi><mi>n</mi><mi>d</mi><mo stretchy="false">=</mo><mi>e</mi><mi>n</mi><msup><mi>d</mi><mo>′</mo></msup></math></span></span></span><script type="math/tex" id="MathJax-Element-250">end=end'</script>.
     </li>
     <li id="axiom22">
-        If <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-245-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi><mi>n</mi><mi>d</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>e</mi><mi>n</mi><mi>d</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>a</mi><mo stretchy="false">,</mo><mi>e</mi><mo stretchy="false">,</mo><msup><mi>a</mi><mo>′</mo></msup><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-245">ended(end) = (a,e,a') </script> then <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-246-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi><mi>v</mi><mi>t</mi><mo stretchy="false">⪯</mo><mi>e</mi><mi>n</mi><mi>d</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-246">evt \preceq end</script> for all
-    <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-247-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi><mi>v</mi><mi>t</mi><mo stretchy="false">∈</mo><mi>e</mi><mi>v</mi><mi>e</mi><mi>n</mi><mi>t</mi><mi>s</mi><mo stretchy="false">(</mo><mi>a</mi><mo stretchy="false">)</mo><mo stretchy="false">−</mo><mi>I</mi><mi>n</mi><mi>v</mi><mi>a</mi><mi>l</mi><mi>i</mi><mi>d</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-247">evt \in events(a) - Invalidations</script>.
+    If <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-251-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi><mi>t</mi><mi>a</mi><mi>r</mi><mi>t</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>s</mi><mi>t</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>a</mi><mo stretchy="false">,</mo><mi>e</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-251">started(st) = (a,e)</script> then <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-252-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi><mi>t</mi><mo stretchy="false">⪯</mo><mi>e</mi><mi>v</mi><mi>t</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-252">st \preceq evt</script> for all <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-253-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi><mi>v</mi><mi>t</mi><mo stretchy="false">∈</mo><mi>e</mi><mi>v</mi><mi>e</mi><mi>n</mi><mi>t</mi><mi>s</mi><mo stretchy="false">(</mo><mi>a</mi><mo stretchy="false">)</mo><mo stretchy="false">−</mo><mi>I</mi><mi>n</mi><mi>v</mi><mi>a</mi><mi>l</mi><mi>i</mi><mi>d</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-253">evt \in
+    events(a) - Invalidations</script>.
     </li>
     <li id="axiom23">
-    If <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-248-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mi>e</mi><mi>n</mi><mi>e</mi><mi>r</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>g</mi><mi>e</mi><mi>n</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>e</mi><mo stretchy="false">,</mo><mi>a</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-248">generated(gen) = (e,a)</script> then <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-249-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mi>e</mi><mi>n</mi><mo stretchy="false">⪯</mo><mi>e</mi><mi>v</mi><mi>t</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-249">gen \preceq evt</script> for all <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-250-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi><mi>v</mi><mi>t</mi><mo stretchy="false">∈</mo><mi>e</mi><mi>v</mi><mi>e</mi><mi>n</mi><mi>t</mi><mi>s</mi><mo stretchy="false">(</mo><mi>e</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-250">evt \in events(e)</script>.
+        If <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-254-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi><mi>n</mi><mi>d</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>e</mi><mi>n</mi><mi>d</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>a</mi><mo stretchy="false">,</mo><mi>e</mi><mo stretchy="false">,</mo><msup><mi>a</mi><mo>′</mo></msup><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-254">ended(end) = (a,e,a') </script> then <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-255-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi><mi>v</mi><mi>t</mi><mo stretchy="false">⪯</mo><mi>e</mi><mi>n</mi><mi>d</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-255">evt \preceq end</script> for all
+    <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-256-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi><mi>v</mi><mi>t</mi><mo stretchy="false">∈</mo><mi>e</mi><mi>v</mi><mi>e</mi><mi>n</mi><mi>t</mi><mi>s</mi><mo stretchy="false">(</mo><mi>a</mi><mo stretchy="false">)</mo><mo stretchy="false">−</mo><mi>I</mi><mi>n</mi><mi>v</mi><mi>a</mi><mi>l</mi><mi>i</mi><mi>d</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-256">evt \in events(a) - Invalidations</script>.
     </li>
     <li id="axiom24">
-        If <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-251-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>i</mi><mi>n</mi><mi>v</mi><mi>a</mi><mi>l</mi><mi>i</mi><mi>d</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>i</mi><mi>n</mi><mi>v</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>e</mi><mo stretchy="false">,</mo><mi>a</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-251">invalidated(inv) = (e,a)</script> then <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-252-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi><mi>v</mi><mi>t</mi><mo stretchy="false">⪯</mo><mi>i</mi><mi>n</mi><mi>v</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-252">evt\preceq inv</script> for all
-    <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-253-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi><mi>v</mi><mi>t</mi><mo stretchy="false">∈</mo><mi>e</mi><mi>v</mi><mi>e</mi><mi>n</mi><mi>t</mi><mi>s</mi><mo stretchy="false">(</mo><mi>e</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-253">evt \in events(e)</script>.
+    If <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-257-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mi>e</mi><mi>n</mi><mi>e</mi><mi>r</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>g</mi><mi>e</mi><mi>n</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>e</mi><mo stretchy="false">,</mo><mi>a</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-257">generated(gen) = (e,a)</script> then <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-258-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mi>e</mi><mi>n</mi><mo stretchy="false">⪯</mo><mi>e</mi><mi>v</mi><mi>t</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-258">gen \preceq evt</script> for all <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-259-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi><mi>v</mi><mi>t</mi><mo stretchy="false">∈</mo><mi>e</mi><mi>v</mi><mi>e</mi><mi>n</mi><mi>t</mi><mi>s</mi><mo stretchy="false">(</mo><mi>e</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-259">evt \in events(e)</script>.
     </li>
     <li id="axiom25">
-    For any derivation <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-254-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi><mi>e</mi><mi>r</mi><mi>i</mi><mi>v</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-254">deriv</script>, with path <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-255-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi><mi>e</mi><mi>r</mi><mi>i</mi><mi>v</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mi>P</mi><mi>a</mi><mi>t</mi><mi>h</mi><mo stretchy="false">(</mo><mi>d</mi><mi>e</mi><mi>r</mi><mi>i</mi><mi>v</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mi>w</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-255">derivationPath(deriv) = w</script>,
-    if <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-256-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>e</mi><mn>2</mn></msub><mo stretchy="false">⋅</mo><mi>g</mi><mo stretchy="false">⋅</mo><mi>a</mi><mo stretchy="false">⋅</mo><mi>u</mi><mo stretchy="false">⋅</mo><msub><mi>e</mi><mn>1</mn></msub></math></span></span></span><script type="math/tex" id="MathJax-Element-256">e_2 \cdot g \cdot a \cdot u \cdot e_1 </script> is a substring of <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-257-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>w</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-257">w</script>
-    where <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-258-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>e</mi><mn>1</mn></msub><mo stretchy="false">,</mo><msub><mi>e</mi><mn>2</mn></msub><mo stretchy="false">∈</mo><mi>E</mi><mi>n</mi><mi>t</mi><mi>i</mi><mi>t</mi><mi>i</mi><mi>e</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-258">e_1,e_2 \in Entities</script>, <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-259-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mo stretchy="false">∈</mo><mi>G</mi><mi>e</mi><mi>n</mi><mi>e</mi><mi>r</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-259">g \in Generations</script>, <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-260-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>u</mi><mo stretchy="false">∈</mo><mi>U</mi><mi>s</mi><mi>a</mi><mi>g</mi><mi>e</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-260">u \in Usages</script>
-    and <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-261-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo stretchy="false">∈</mo><mi>A</mi><mi>c</mi><mi>t</mi><mi>i</mi><mi>v</mi><mi>i</mi><mi>t</mi><mi>i</mi><mi>e</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-261">a \in Activities</script> then <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-262-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>u</mi><mo stretchy="false">⪯</mo><mi>g</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-262">u \preceq g</script>.
+        If <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-260-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>i</mi><mi>n</mi><mi>v</mi><mi>a</mi><mi>l</mi><mi>i</mi><mi>d</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>i</mi><mi>n</mi><mi>v</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>e</mi><mo stretchy="false">,</mo><mi>a</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-260">invalidated(inv) = (e,a)</script> then <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-261-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi><mi>v</mi><mi>t</mi><mo stretchy="false">⪯</mo><mi>i</mi><mi>n</mi><mi>v</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-261">evt\preceq inv</script> for all
+    <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-262-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi><mi>v</mi><mi>t</mi><mo stretchy="false">∈</mo><mi>e</mi><mi>v</mi><mi>e</mi><mi>n</mi><mi>t</mi><mi>s</mi><mo stretchy="false">(</mo><mi>e</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-262">evt \in events(e)</script>.
     </li>
     <li id="axiom26">
-    For any derivation <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-263-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi><mi>e</mi><mi>r</mi><mi>i</mi><mi>v</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-263">deriv</script>, with path <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-264-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi><mi>e</mi><mi>r</mi><mi>i</mi><mi>v</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mi>P</mi><mi>a</mi><mi>t</mi><mi>h</mi><mo stretchy="false">(</mo><mi>d</mi><mi>e</mi><mi>r</mi><mi>i</mi><mi>v</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><msub><mi>e</mi><mn>2</mn></msub><mo stretchy="false">⋅</mo><mi>w</mi><mo stretchy="false">⋅</mo><msub><mi>e</mi><mn>1</mn></msub></math></span></span></span><script type="math/tex" id="MathJax-Element-264">derivationPath(deriv) = e_2
-    \cdot w \cdot e_1</script>, if <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-265-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mi>e</mi><mi>n</mi><mi>e</mi><mi>r</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>g</mi><mi>e</mi><msub><mi>n</mi><mn>1</mn></msub><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><msub><mi>e</mi><mn>1</mn></msub><mo stretchy="false">,</mo><msub><mi>a</mi><mn>1</mn></msub><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-265">generated(gen_1) = (e_1,a_1)</script> and
-    <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-266-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mi>e</mi><mi>n</mi><mi>e</mi><mi>r</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>g</mi><mi>e</mi><msub><mi>n</mi><mn>2</mn></msub><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><msub><mi>e</mi><mn>2</mn></msub><mo stretchy="false">,</mo><msub><mi>a</mi><mn>2</mn></msub><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-266">generated(gen_2) = (e_2,a_2)</script> then <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-267-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mi>e</mi><msub><mi>n</mi><mn>1</mn></msub><mo stretchy="false">≺</mo><mi>g</mi><mi>e</mi><msub><mi>n</mi><mn>2</mn></msub></math></span></span></span><script type="math/tex" id="MathJax-Element-267">gen_1 \prec gen_2</script>.  
+    For any derivation <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-263-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi><mi>e</mi><mi>r</mi><mi>i</mi><mi>v</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-263">deriv</script>, with path <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-264-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi><mi>e</mi><mi>r</mi><mi>i</mi><mi>v</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mi>P</mi><mi>a</mi><mi>t</mi><mi>h</mi><mo stretchy="false">(</mo><mi>d</mi><mi>e</mi><mi>r</mi><mi>i</mi><mi>v</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mi>w</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-264">derivationPath(deriv) = w</script>,
+    if <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-265-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>e</mi><mn>2</mn></msub><mo stretchy="false">⋅</mo><mi>g</mi><mo stretchy="false">⋅</mo><mi>a</mi><mo stretchy="false">⋅</mo><mi>u</mi><mo stretchy="false">⋅</mo><msub><mi>e</mi><mn>1</mn></msub></math></span></span></span><script type="math/tex" id="MathJax-Element-265">e_2 \cdot g \cdot a \cdot u \cdot e_1 </script> is a substring of <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-266-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>w</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-266">w</script>
+    where <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-267-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>e</mi><mn>1</mn></msub><mo stretchy="false">,</mo><msub><mi>e</mi><mn>2</mn></msub><mo stretchy="false">∈</mo><mi>E</mi><mi>n</mi><mi>t</mi><mi>i</mi><mi>t</mi><mi>i</mi><mi>e</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-267">e_1,e_2 \in Entities</script>, <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-268-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mo stretchy="false">∈</mo><mi>G</mi><mi>e</mi><mi>n</mi><mi>e</mi><mi>r</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-268">g \in Generations</script>, <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-269-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>u</mi><mo stretchy="false">∈</mo><mi>U</mi><mi>s</mi><mi>a</mi><mi>g</mi><mi>e</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-269">u \in Usages</script>
+    and <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-270-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo stretchy="false">∈</mo><mi>A</mi><mi>c</mi><mi>t</mi><mi>i</mi><mi>v</mi><mi>i</mi><mi>t</mi><mi>i</mi><mi>e</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-270">a \in Activities</script> then <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-271-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>u</mi><mo stretchy="false">⪯</mo><mi>g</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-271">u \preceq g</script>.
     </li>
     <li id="axiom27">
-    If  <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-268-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mi>s</mi><mi>s</mi><mi>o</mi><mi>c</mi><mi>i</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>d</mi><mi>W</mi><mi>i</mi><mi>t</mi><mi>h</mi><mo stretchy="false">(</mo><mi>a</mi><mi>s</mi><mi>s</mi><mi>o</mi><mi>c</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>a</mi><mo stretchy="false">,</mo><mi>a</mi><mi>g</mi><mo stretchy="false">,</mo><mi>p</mi><mi>l</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-268">associatedWith(assoc) = (a,ag,pl)</script>  and <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-269-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi><mi>t</mi><mi>a</mi><mi>r</mi><mi>t</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>s</mi><mi>t</mi><mi>a</mi><mi>r</mi><mi>t</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>a</mi><mo stretchy="false">,</mo><msub><mi>e</mi><mn>1</mn></msub><mo stretchy="false">,</mo><msub><mi>a</mi><mn>1</mn></msub><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-269">started(start) = (a,e_1,a_1)</script> and <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-270-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>i</mi><mi>n</mi><mi>v</mi><mi>a</mi><mi>l</mi><mi>i</mi><mi>d</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>i</mi><mi>n</mi><mi>v</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>a</mi><mi>g</mi><mo stretchy="false">,</mo><msub><mi>a</mi><mn>2</mn></msub><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-270">invalidated(inv) =
-    (ag,a_2)</script> then <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-271-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi><mi>t</mi><mi>a</mi><mi>r</mi><mi>t</mi><mo stretchy="false">⪯</mo><mi>i</mi><mi>n</mi><mi>v</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-271">start \preceq inv</script>.
+    For any derivation <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-272-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi><mi>e</mi><mi>r</mi><mi>i</mi><mi>v</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-272">deriv</script>, with path <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-273-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi><mi>e</mi><mi>r</mi><mi>i</mi><mi>v</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mi>P</mi><mi>a</mi><mi>t</mi><mi>h</mi><mo stretchy="false">(</mo><mi>d</mi><mi>e</mi><mi>r</mi><mi>i</mi><mi>v</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><msub><mi>e</mi><mn>2</mn></msub><mo stretchy="false">⋅</mo><mi>w</mi><mo stretchy="false">⋅</mo><msub><mi>e</mi><mn>1</mn></msub></math></span></span></span><script type="math/tex" id="MathJax-Element-273">derivationPath(deriv) = e_2
+    \cdot w \cdot e_1</script>, if <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-274-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mi>e</mi><mi>n</mi><mi>e</mi><mi>r</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>g</mi><mi>e</mi><msub><mi>n</mi><mn>1</mn></msub><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><msub><mi>e</mi><mn>1</mn></msub><mo stretchy="false">,</mo><msub><mi>a</mi><mn>1</mn></msub><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-274">generated(gen_1) = (e_1,a_1)</script> and
+    <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-275-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mi>e</mi><mi>n</mi><mi>e</mi><mi>r</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>g</mi><mi>e</mi><msub><mi>n</mi><mn>2</mn></msub><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><msub><mi>e</mi><mn>2</mn></msub><mo stretchy="false">,</mo><msub><mi>a</mi><mn>2</mn></msub><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-275">generated(gen_2) = (e_2,a_2)</script> then <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-276-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mi>e</mi><msub><mi>n</mi><mn>1</mn></msub><mo stretchy="false">≺</mo><mi>g</mi><mi>e</mi><msub><mi>n</mi><mn>2</mn></msub></math></span></span></span><script type="math/tex" id="MathJax-Element-276">gen_1 \prec gen_2</script>.  
     </li>
     <li id="axiom28">
-    If  <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-272-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mi>s</mi><mi>s</mi><mi>o</mi><mi>c</mi><mi>i</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>d</mi><mi>W</mi><mi>i</mi><mi>t</mi><mi>h</mi><mo stretchy="false">(</mo><mi>a</mi><mi>s</mi><mi>s</mi><mi>o</mi><mi>c</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>a</mi><mo stretchy="false">,</mo><mi>a</mi><mi>g</mi><mo stretchy="false">,</mo><mi>p</mi><mi>l</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-272">associatedWith(assoc) = (a,ag,pl)</script>  and <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-273-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mi>e</mi><mi>n</mi><mi>e</mi><mi>r</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>g</mi><mi>e</mi><mi>n</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>a</mi><mi>g</mi><mo stretchy="false">,</mo><msub><mi>a</mi><mn>1</mn></msub><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-273">generated(gen) =
-    (ag,a_1)</script> and <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-274-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi><mi>n</mi><mi>d</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>e</mi><mi>n</mi><mi>d</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>a</mi><mo stretchy="false">,</mo><msub><mi>e</mi><mn>2</mn></msub><mo stretchy="false">,</mo><msub><mi>a</mi><mn>2</mn></msub><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-274">ended(end) = (a,e_2,a_2)</script> then <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-275-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mi>e</mi><mi>n</mi><mo stretchy="false">⪯</mo><mi>e</mi><mi>n</mi><mi>d</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-275">gen \preceq end</script>.
+    If  <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-277-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mi>s</mi><mi>s</mi><mi>o</mi><mi>c</mi><mi>i</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>d</mi><mi>W</mi><mi>i</mi><mi>t</mi><mi>h</mi><mo stretchy="false">(</mo><mi>a</mi><mi>s</mi><mi>s</mi><mi>o</mi><mi>c</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>a</mi><mo stretchy="false">,</mo><mi>a</mi><mi>g</mi><mo stretchy="false">,</mo><mi>p</mi><mi>l</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-277">associatedWith(assoc) = (a,ag,pl)</script>  and <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-278-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi><mi>t</mi><mi>a</mi><mi>r</mi><mi>t</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>s</mi><mi>t</mi><mi>a</mi><mi>r</mi><mi>t</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>a</mi><mo stretchy="false">,</mo><msub><mi>e</mi><mn>1</mn></msub><mo stretchy="false">,</mo><msub><mi>a</mi><mn>1</mn></msub><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-278">started(start) = (a,e_1,a_1)</script> and <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-279-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>i</mi><mi>n</mi><mi>v</mi><mi>a</mi><mi>l</mi><mi>i</mi><mi>d</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>i</mi><mi>n</mi><mi>v</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>a</mi><mi>g</mi><mo stretchy="false">,</mo><msub><mi>a</mi><mn>2</mn></msub><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-279">invalidated(inv) =
+    (ag,a_2)</script> then <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-280-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi><mi>t</mi><mi>a</mi><mi>r</mi><mi>t</mi><mo stretchy="false">⪯</mo><mi>i</mi><mi>n</mi><mi>v</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-280">start \preceq inv</script>.
     </li>
     <li id="axiom29">
-    If  <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-276-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mi>s</mi><mi>s</mi><mi>o</mi><mi>c</mi><mi>i</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>d</mi><mi>W</mi><mi>i</mi><mi>t</mi><mi>h</mi><mo stretchy="false">(</mo><mi>a</mi><mi>s</mi><mi>s</mi><mi>o</mi><mi>c</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>a</mi><mo stretchy="false">,</mo><mi>a</mi><mi>g</mi><mo stretchy="false">,</mo><mi>p</mi><mi>l</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-276">associatedWith(assoc) = (a,ag,pl)</script>  and <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-277-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi><mi>t</mi><mi>a</mi><mi>r</mi><mi>t</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>s</mi><mi>t</mi><mi>a</mi><mi>r</mi><mi>t</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>a</mi><mo stretchy="false">,</mo><msub><mi>e</mi><mn>1</mn></msub><mo stretchy="false">,</mo><msub><mi>a</mi><mn>1</mn></msub><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-277">started(start) = (a,e_1,a_1)</script> and <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-278-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi><mi>n</mi><mi>d</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>e</mi><mi>n</mi><mi>d</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>a</mi><mi>g</mi><mo stretchy="false">,</mo><msub><mi>e</mi><mn>2</mn></msub><mo stretchy="false">,</mo><msub><mi>a</mi><mn>2</mn></msub><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-278">ended(end) =
-    (ag,e_2,a_2)</script> then <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-279-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi><mi>t</mi><mi>a</mi><mi>r</mi><mi>t</mi><mo stretchy="false">⪯</mo><mi>e</mi><mi>n</mi><mi>d</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-279">start \preceq end</script>.
+    If  <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-281-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mi>s</mi><mi>s</mi><mi>o</mi><mi>c</mi><mi>i</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>d</mi><mi>W</mi><mi>i</mi><mi>t</mi><mi>h</mi><mo stretchy="false">(</mo><mi>a</mi><mi>s</mi><mi>s</mi><mi>o</mi><mi>c</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>a</mi><mo stretchy="false">,</mo><mi>a</mi><mi>g</mi><mo stretchy="false">,</mo><mi>p</mi><mi>l</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-281">associatedWith(assoc) = (a,ag,pl)</script>  and <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-282-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mi>e</mi><mi>n</mi><mi>e</mi><mi>r</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>g</mi><mi>e</mi><mi>n</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>a</mi><mi>g</mi><mo stretchy="false">,</mo><msub><mi>a</mi><mn>1</mn></msub><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-282">generated(gen) =
+    (ag,a_1)</script> and <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-283-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi><mi>n</mi><mi>d</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>e</mi><mi>n</mi><mi>d</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>a</mi><mo stretchy="false">,</mo><msub><mi>e</mi><mn>2</mn></msub><mo stretchy="false">,</mo><msub><mi>a</mi><mn>2</mn></msub><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-283">ended(end) = (a,e_2,a_2)</script> then <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-284-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mi>e</mi><mi>n</mi><mo stretchy="false">⪯</mo><mi>e</mi><mi>n</mi><mi>d</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-284">gen \preceq end</script>.
     </li>
     <li id="axiom30">
-    If  <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-280-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mi>s</mi><mi>s</mi><mi>o</mi><mi>c</mi><mi>i</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>d</mi><mi>W</mi><mi>i</mi><mi>t</mi><mi>h</mi><mo stretchy="false">(</mo><mi>a</mi><mi>s</mi><mi>s</mi><mi>o</mi><mi>c</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>a</mi><mo stretchy="false">,</mo><mi>a</mi><mi>g</mi><mo stretchy="false">,</mo><mi>p</mi><mi>l</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-280">associatedWith(assoc) = (a,ag,pl)</script>  and <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-281-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi><mi>t</mi><mi>a</mi><mi>r</mi><mi>t</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>s</mi><mi>t</mi><mi>a</mi><mi>r</mi><mi>t</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>a</mi><mi>g</mi><mo stretchy="false">,</mo><msub><mi>e</mi><mn>1</mn></msub><mo stretchy="false">,</mo><msub><mi>a</mi><mn>1</mn></msub><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-281">started(start) =
-    (ag,e_1,a_1)</script> and <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-282-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi><mi>n</mi><mi>d</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>e</mi><mi>n</mi><mi>d</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>a</mi><mo stretchy="false">,</mo><msub><mi>e</mi><mn>2</mn></msub><mo stretchy="false">,</mo><msub><mi>a</mi><mn>2</mn></msub><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-282">ended(end) = (a,e_2,a_2)</script> then <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-283-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi><mi>t</mi><mi>a</mi><mi>r</mi><mi>t</mi><mo stretchy="false">⪯</mo><mi>e</mi><mi>n</mi><mi>d</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-283">start \preceq end</script>.
+    If  <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-285-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mi>s</mi><mi>s</mi><mi>o</mi><mi>c</mi><mi>i</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>d</mi><mi>W</mi><mi>i</mi><mi>t</mi><mi>h</mi><mo stretchy="false">(</mo><mi>a</mi><mi>s</mi><mi>s</mi><mi>o</mi><mi>c</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>a</mi><mo stretchy="false">,</mo><mi>a</mi><mi>g</mi><mo stretchy="false">,</mo><mi>p</mi><mi>l</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-285">associatedWith(assoc) = (a,ag,pl)</script>  and <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-286-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi><mi>t</mi><mi>a</mi><mi>r</mi><mi>t</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>s</mi><mi>t</mi><mi>a</mi><mi>r</mi><mi>t</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>a</mi><mo stretchy="false">,</mo><msub><mi>e</mi><mn>1</mn></msub><mo stretchy="false">,</mo><msub><mi>a</mi><mn>1</mn></msub><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-286">started(start) = (a,e_1,a_1)</script> and <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-287-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi><mi>n</mi><mi>d</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>e</mi><mi>n</mi><mi>d</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>a</mi><mi>g</mi><mo stretchy="false">,</mo><msub><mi>e</mi><mn>2</mn></msub><mo stretchy="false">,</mo><msub><mi>a</mi><mn>2</mn></msub><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-287">ended(end) =
+    (ag,e_2,a_2)</script> then <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-288-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi><mi>t</mi><mi>a</mi><mi>r</mi><mi>t</mi><mo stretchy="false">⪯</mo><mi>e</mi><mi>n</mi><mi>d</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-288">start \preceq end</script>.
     </li>
-       <li id="axiom31">
-    If <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-284-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mi>t</mi><mi>t</mi><mi>r</mi><mi>i</mi><mi>b</mi><mi>u</mi><mi>t</mi><mi>e</mi><mi>d</mi><mi>T</mi><mi>o</mi><mo stretchy="false">(</mo><mi>a</mi><mi>t</mi><mi>t</mi><mi>r</mi><mi>i</mi><mi>b</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>e</mi><mo stretchy="false">,</mo><mi>a</mi><mi>g</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-284">attributedTo(attrib) = (e,ag)</script>  and <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-285-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mi>e</mi><mi>n</mi><mi>e</mi><mi>r</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>g</mi><mi>e</mi><msub><mi>n</mi><mn>1</mn></msub><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>a</mi><msub><mi>g</mi><mn>1</mn></msub><mo stretchy="false">,</mo><msub><mi>a</mi><mn>1</mn></msub><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-285">generated(gen_1) =
-    (ag_1,a_1)</script> and <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-286-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mi>e</mi><mi>n</mi><mi>e</mi><mi>r</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>g</mi><mi>e</mi><msub><mi>n</mi><mn>2</mn></msub><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>e</mi><mo stretchy="false">,</mo><msub><mi>a</mi><mn>2</mn></msub><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-286">generated(gen_2) = (e,a_2)</script> then <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-287-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mi>e</mi><msub><mi>n</mi><mn>1</mn></msub><mo stretchy="false">⪯</mo><mi>g</mi><mi>e</mi><msub><mi>n</mi><mn>2</mn></msub></math></span></span></span><script type="math/tex" id="MathJax-Element-287">gen_1 \preceq gen_2</script>.
+    <li id="axiom31">
+    If  <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-289-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mi>s</mi><mi>s</mi><mi>o</mi><mi>c</mi><mi>i</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>d</mi><mi>W</mi><mi>i</mi><mi>t</mi><mi>h</mi><mo stretchy="false">(</mo><mi>a</mi><mi>s</mi><mi>s</mi><mi>o</mi><mi>c</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>a</mi><mo stretchy="false">,</mo><mi>a</mi><mi>g</mi><mo stretchy="false">,</mo><mi>p</mi><mi>l</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-289">associatedWith(assoc) = (a,ag,pl)</script>  and <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-290-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi><mi>t</mi><mi>a</mi><mi>r</mi><mi>t</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>s</mi><mi>t</mi><mi>a</mi><mi>r</mi><mi>t</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>a</mi><mi>g</mi><mo stretchy="false">,</mo><msub><mi>e</mi><mn>1</mn></msub><mo stretchy="false">,</mo><msub><mi>a</mi><mn>1</mn></msub><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-290">started(start) =
+    (ag,e_1,a_1)</script> and <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-291-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi><mi>n</mi><mi>d</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>e</mi><mi>n</mi><mi>d</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>a</mi><mo stretchy="false">,</mo><msub><mi>e</mi><mn>2</mn></msub><mo stretchy="false">,</mo><msub><mi>a</mi><mn>2</mn></msub><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-291">ended(end) = (a,e_2,a_2)</script> then <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-292-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi><mi>t</mi><mi>a</mi><mi>r</mi><mi>t</mi><mo stretchy="false">⪯</mo><mi>e</mi><mi>n</mi><mi>d</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-292">start \preceq end</script>.
     </li>
        <li id="axiom32">
-    If <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-288-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mi>t</mi><mi>t</mi><mi>r</mi><mi>i</mi><mi>b</mi><mi>u</mi><mi>t</mi><mi>e</mi><mi>d</mi><mi>T</mi><mi>o</mi><mo stretchy="false">(</mo><mi>a</mi><mi>t</mi><mi>t</mi><mi>r</mi><mi>i</mi><mi>b</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>e</mi><mo stretchy="false">,</mo><mi>a</mi><mi>g</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-288">attributedTo(attrib) = (e,ag)</script>  and <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-289-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi><mi>t</mi><mi>a</mi><mi>r</mi><mi>t</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>s</mi><mi>t</mi><mi>a</mi><mi>r</mi><mi>t</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>a</mi><msub><mi>g</mi><mn>1</mn></msub><mo stretchy="false">,</mo><msub><mi>e</mi><mn>1</mn></msub><mo stretchy="false">,</mo><msub><mi>a</mi><mn>1</mn></msub><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-289">started(start) =
-    (ag_1,e_1,a_1)</script> and <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-290-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mi>e</mi><mi>n</mi><mi>e</mi><mi>r</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>g</mi><mi>e</mi><mi>n</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>e</mi><mo stretchy="false">,</mo><msub><mi>a</mi><mn>2</mn></msub><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-290">generated(gen) = (e,a_2)</script> then <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-291-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi><mi>t</mi><mi>a</mi><mi>r</mi><mi>t</mi><mo stretchy="false">⪯</mo><mi>g</mi><mi>e</mi><mi>n</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-291">start \preceq gen</script>.
+    If <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-293-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mi>t</mi><mi>t</mi><mi>r</mi><mi>i</mi><mi>b</mi><mi>u</mi><mi>t</mi><mi>e</mi><mi>d</mi><mi>T</mi><mi>o</mi><mo stretchy="false">(</mo><mi>a</mi><mi>t</mi><mi>t</mi><mi>r</mi><mi>i</mi><mi>b</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>e</mi><mo stretchy="false">,</mo><mi>a</mi><mi>g</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-293">attributedTo(attrib) = (e,ag)</script>  and <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-294-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mi>e</mi><mi>n</mi><mi>e</mi><mi>r</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>g</mi><mi>e</mi><msub><mi>n</mi><mn>1</mn></msub><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>a</mi><msub><mi>g</mi><mn>1</mn></msub><mo stretchy="false">,</mo><msub><mi>a</mi><mn>1</mn></msub><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-294">generated(gen_1) =
+    (ag_1,a_1)</script> and <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-295-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mi>e</mi><mi>n</mi><mi>e</mi><mi>r</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>g</mi><mi>e</mi><msub><mi>n</mi><mn>2</mn></msub><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>e</mi><mo stretchy="false">,</mo><msub><mi>a</mi><mn>2</mn></msub><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-295">generated(gen_2) = (e,a_2)</script> then <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-296-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mi>e</mi><msub><mi>n</mi><mn>1</mn></msub><mo stretchy="false">⪯</mo><mi>g</mi><mi>e</mi><msub><mi>n</mi><mn>2</mn></msub></math></span></span></span><script type="math/tex" id="MathJax-Element-296">gen_1 \preceq gen_2</script>.
     </li>
        <li id="axiom33">
-    If <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-292-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mi>c</mi><mi>t</mi><mi>e</mi><mi>d</mi><mi>F</mi><mi>o</mi><mi>r</mi><mo stretchy="false">(</mo><mi>d</mi><mi>e</mi><mi>l</mi><mi>e</mi><mi>g</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>a</mi><msub><mi>g</mi><mn>2</mn></msub><mo stretchy="false">,</mo><mi>a</mi><msub><mi>g</mi><mn>1</mn></msub><mo stretchy="false">,</mo><mi>a</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-292">actedFor(deleg) = (ag_2,ag_1,a)</script>  and <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-293-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mi>e</mi><mi>n</mi><mi>e</mi><mi>r</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>g</mi><mi>e</mi><mi>n</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>a</mi><msub><mi>g</mi><mn>1</mn></msub><mo stretchy="false">,</mo><msub><mi>a</mi><mn>1</mn></msub><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-293">generated(gen) =
-    (ag_1,a_1)</script> and <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-294-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>i</mi><mi>n</mi><mi>v</mi><mi>a</mi><mi>l</mi><mi>i</mi><mi>d</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>i</mi><mi>n</mi><mi>v</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>a</mi><msub><mi>g</mi><mn>2</mn></msub><mo stretchy="false">,</mo><msub><mi>a</mi><mn>2</mn></msub><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-294">invalidated(inv) = (ag_2,a_2)</script> then <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-295-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mi>e</mi><mi>n</mi><mo stretchy="false">⪯</mo><mi>i</mi><mi>n</mi><mi>v</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-295">gen \preceq inv</script>.
+    If <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-297-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mi>t</mi><mi>t</mi><mi>r</mi><mi>i</mi><mi>b</mi><mi>u</mi><mi>t</mi><mi>e</mi><mi>d</mi><mi>T</mi><mi>o</mi><mo stretchy="false">(</mo><mi>a</mi><mi>t</mi><mi>t</mi><mi>r</mi><mi>i</mi><mi>b</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>e</mi><mo stretchy="false">,</mo><mi>a</mi><mi>g</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-297">attributedTo(attrib) = (e,ag)</script>  and <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-298-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi><mi>t</mi><mi>a</mi><mi>r</mi><mi>t</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>s</mi><mi>t</mi><mi>a</mi><mi>r</mi><mi>t</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>a</mi><msub><mi>g</mi><mn>1</mn></msub><mo stretchy="false">,</mo><msub><mi>e</mi><mn>1</mn></msub><mo stretchy="false">,</mo><msub><mi>a</mi><mn>1</mn></msub><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-298">started(start) =
+    (ag_1,e_1,a_1)</script> and <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-299-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mi>e</mi><mi>n</mi><mi>e</mi><mi>r</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>g</mi><mi>e</mi><mi>n</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>e</mi><mo stretchy="false">,</mo><msub><mi>a</mi><mn>2</mn></msub><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-299">generated(gen) = (e,a_2)</script> then <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-300-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi><mi>t</mi><mi>a</mi><mi>r</mi><mi>t</mi><mo stretchy="false">⪯</mo><mi>g</mi><mi>e</mi><mi>n</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-300">start \preceq gen</script>.
     </li>
        <li id="axiom34">
-    If <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-296-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mi>c</mi><mi>t</mi><mi>e</mi><mi>d</mi><mi>F</mi><mi>o</mi><mi>r</mi><mo stretchy="false">(</mo><mi>d</mi><mi>e</mi><mi>l</mi><mi>e</mi><mi>g</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>a</mi><msub><mi>g</mi><mn>2</mn></msub><mo stretchy="false">,</mo><mi>a</mi><msub><mi>g</mi><mn>1</mn></msub><mo stretchy="false">,</mo><mi>a</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-296">actedFor(deleg) = (ag_2,ag_1,a)</script> and <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-297-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi><mi>t</mi><mi>a</mi><mi>r</mi><mi>t</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>s</mi><mi>t</mi><mi>a</mi><mi>r</mi><mi>t</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>a</mi><msub><mi>g</mi><mn>1</mn></msub><mo stretchy="false">,</mo><msub><mi>e</mi><mn>1</mn></msub><mo stretchy="false">,</mo><msub><mi>a</mi><mn>1</mn></msub><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-297">started(start) =
-    (ag_1,e_1,a_1)</script> and <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-298-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi><mi>n</mi><mi>d</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>e</mi><mi>n</mi><mi>d</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>a</mi><msub><mi>g</mi><mn>2</mn></msub><mo stretchy="false">,</mo><msub><mi>e</mi><mn>2</mn></msub><mo stretchy="false">,</mo><msub><mi>a</mi><mn>2</mn></msub><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-298">ended(end) = (ag_2,e_2,a_2)</script> then <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-299-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi><mi>t</mi><mi>a</mi><mi>r</mi><mi>t</mi><mo stretchy="false">⪯</mo><mi>e</mi><mi>n</mi><mi>d</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-299">start \preceq
+    If <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-301-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mi>c</mi><mi>t</mi><mi>e</mi><mi>d</mi><mi>F</mi><mi>o</mi><mi>r</mi><mo stretchy="false">(</mo><mi>d</mi><mi>e</mi><mi>l</mi><mi>e</mi><mi>g</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>a</mi><msub><mi>g</mi><mn>2</mn></msub><mo stretchy="false">,</mo><mi>a</mi><msub><mi>g</mi><mn>1</mn></msub><mo stretchy="false">,</mo><mi>a</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-301">actedFor(deleg) = (ag_2,ag_1,a)</script>  and <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-302-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mi>e</mi><mi>n</mi><mi>e</mi><mi>r</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>g</mi><mi>e</mi><mi>n</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>a</mi><msub><mi>g</mi><mn>1</mn></msub><mo stretchy="false">,</mo><msub><mi>a</mi><mn>1</mn></msub><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-302">generated(gen) =
+    (ag_1,a_1)</script> and <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-303-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>i</mi><mi>n</mi><mi>v</mi><mi>a</mi><mi>l</mi><mi>i</mi><mi>d</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>i</mi><mi>n</mi><mi>v</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>a</mi><msub><mi>g</mi><mn>2</mn></msub><mo stretchy="false">,</mo><msub><mi>a</mi><mn>2</mn></msub><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-303">invalidated(inv) = (ag_2,a_2)</script> then <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-304-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mi>e</mi><mi>n</mi><mo stretchy="false">⪯</mo><mi>i</mi><mi>n</mi><mi>v</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-304">gen \preceq inv</script>.
+    </li>
+       <li id="axiom35">
+    If <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-305-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mi>c</mi><mi>t</mi><mi>e</mi><mi>d</mi><mi>F</mi><mi>o</mi><mi>r</mi><mo stretchy="false">(</mo><mi>d</mi><mi>e</mi><mi>l</mi><mi>e</mi><mi>g</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>a</mi><msub><mi>g</mi><mn>2</mn></msub><mo stretchy="false">,</mo><mi>a</mi><msub><mi>g</mi><mn>1</mn></msub><mo stretchy="false">,</mo><mi>a</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-305">actedFor(deleg) = (ag_2,ag_1,a)</script> and <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-306-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi><mi>t</mi><mi>a</mi><mi>r</mi><mi>t</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>s</mi><mi>t</mi><mi>a</mi><mi>r</mi><mi>t</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>a</mi><msub><mi>g</mi><mn>1</mn></msub><mo stretchy="false">,</mo><msub><mi>e</mi><mn>1</mn></msub><mo stretchy="false">,</mo><msub><mi>a</mi><mn>1</mn></msub><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-306">started(start) =
+    (ag_1,e_1,a_1)</script> and <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-307-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi><mi>n</mi><mi>d</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>e</mi><mi>n</mi><mi>d</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>a</mi><msub><mi>g</mi><mn>2</mn></msub><mo stretchy="false">,</mo><msub><mi>e</mi><mn>2</mn></msub><mo stretchy="false">,</mo><msub><mi>a</mi><mn>2</mn></msub><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-307">ended(end) = (ag_2,e_2,a_2)</script> then <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-308-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi><mi>t</mi><mi>a</mi><mi>r</mi><mi>t</mi><mo stretchy="false">⪯</mo><mi>e</mi><mi>n</mi><mi>d</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-308">start \preceq
     end</script>.
     </li>
-    
     </ol>
 </div>
 
@@ -1859,7 +1828,7 @@
   constraints hold in all structures.</p>
 
 <div class="remark">
-  <p> Axioms 21 and 22 do not require that invalidation events
+  <p> Axioms 22 and 23 do not require that invalidation events
   originating from an activity follow the activity's start
   event(s) or precede its end event(s).
   This is because
@@ -1871,12 +1840,12 @@
   </section>
 
 <section id="putting-it-all-together">
-<h3><span class="secno">3.4 </span> Putting it all together </h3>
-
-<p>A <em>PROV structure</em> <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-300-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>W</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-300">W</script> is a collection of sets, functions, and relations containing all of the above
+<!--OddPage--><h2><span class="secno">6. </span> Putting it all together </h2>
+
+<p>A <em>PROV structure</em> <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-309-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>W</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-309">W</script> is a collection of sets, functions, and relations containing all of the above
 described components and satisfying all of the associated properties
 and axions.  If we need to talk about the objects or relations of
-more than one structure then we may write <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-301-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>W</mi><mn>1</mn></msub><mo>.</mo><mi>O</mi><mi>b</mi><mi>j</mi><mi>e</mi><mi>c</mi><mi>t</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-301">W_1.Objects</script>, <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-302-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>W</mi><mn>1</mn></msub><mo>.</mo><mi>T</mi><mi>h</mi><mi>i</mi><mi>n</mi><mi>g</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-302">W_1.Things</script>,
+more than one structure then we may write <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-310-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>W</mi><mn>1</mn></msub><mo>.</mo><mi>O</mi><mi>b</mi><mi>j</mi><mi>e</mi><mi>c</mi><mi>t</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-310">W_1.Objects</script>, <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-311-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>W</mi><mn>1</mn></msub><mo>.</mo><mi>T</mi><mi>h</mi><mi>i</mi><mi>n</mi><mi>g</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-311">W_1.Things</script>,
 etc.; otherwise, to
 decrease notational clutter, when we consider a fixed structure then the names of the sets, relations and functions above refer to the components of that model.
 </p>
@@ -1885,129 +1854,130 @@
 <p>
 Some features of PROV structures are relatively obvious or routine,
 corresponding directly to features of PROV and associated inferences.
-For example, the functions <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-303-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>u</mi><mi>s</mi><mi>e</mi><mi>d</mi><mo stretchy="false">,</mo><mi>g</mi><mi>e</mi><mi>n</mi><mi>e</mi><mi>r</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>d</mi><mo stretchy="false">,</mo><mi>i</mi><mi>n</mi><mi>v</mi><mi>a</mi><mi>l</mi><mi>i</mi><mi>d</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>d</mi><mo stretchy="false">,</mo><mi>s</mi><mi>t</mi><mi>a</mi><mi>r</mi><mi>t</mi><mi>e</mi><mi>d</mi><mo stretchy="false">,</mo><mi>e</mi><mi>n</mi><mi>d</mi><mi>e</mi><mi>d</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-303">used, generated, invalidated, started,
+For example, the functions <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-312-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>u</mi><mi>s</mi><mi>e</mi><mi>d</mi><mo stretchy="false">,</mo><mi>g</mi><mi>e</mi><mi>n</mi><mi>e</mi><mi>r</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>d</mi><mo stretchy="false">,</mo><mi>i</mi><mi>n</mi><mi>v</mi><mi>a</mi><mi>l</mi><mi>i</mi><mi>d</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>d</mi><mo stretchy="false">,</mo><mi>s</mi><mi>t</mi><mi>a</mi><mi>r</mi><mi>t</mi><mi>e</mi><mi>d</mi><mo stretchy="false">,</mo><mi>e</mi><mi>n</mi><mi>d</mi><mi>e</mi><mi>d</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-312">used, generated, invalidated, started,
 ended</script> mapping events to their associated entities or activities, and
-<span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-304-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi><mi>o</mi><mi>m</mi><mi>m</mi><mi>u</mi><mi>n</mi><mi>i</mi><mi>c</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>d</mi><mo stretchy="false">,</mo><mi>a</mi><mi>s</mi><mi>s</mi><mi>o</mi><mi>c</mi><mi>i</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>d</mi><mi>W</mi><mi>i</mi><mi>t</mi><mi>h</mi><mo stretchy="false">,</mo><mi>a</mi><mi>t</mi><mi>t</mi><mi>r</mi><mi>i</mi><mi>b</mi><mi>u</mi><mi>t</mi><mi>e</mi><mi>d</mi><mi>T</mi><mi>o</mi><mo stretchy="false">,</mo><mi>a</mi><mi>c</mi><mi>t</mi><mi>e</mi><mi>d</mi><mi>F</mi><mi>o</mi><mi>r</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-304">communicated, associatedWith, attributedTo, actedFor</script> associating
-other types of influences with appropriate data.  On the other hand,
+<span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-313-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi><mi>o</mi><mi>m</mi><mi>m</mi><mi>u</mi><mi>n</mi><mi>i</mi><mi>c</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>d</mi><mo stretchy="false">,</mo><mi>a</mi><mi>s</mi><mi>s</mi><mi>o</mi><mi>c</mi><mi>i</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>d</mi><mi>W</mi><mi>i</mi><mi>t</mi><mi>h</mi><mo stretchy="false">,</mo><mi>a</mi><mi>t</mi><mi>t</mi><mi>r</mi><mi>i</mi><mi>b</mi><mi>u</mi><mi>t</mi><mi>e</mi><mi>d</mi><mi>T</mi><mi>o</mi><mo stretchy="false">,</mo><mi>a</mi><mi>c</mi><mi>t</mi><mi>e</mi><mi>d</mi><mi>F</mi><mi>o</mi><mi>r</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-313">communicated, associatedWith, attributedTo, actedFor</script> associating
+other types of influences with appropriate data. 
+</p>
+  <p>
+  On the other hand,
 some features are more distinctive, and represent areas where formal
 modeling has been used to guide the development of PROV.  Derivation
 paths are one such distinctive feature; they correspond to an
 intuition that derivations may describe one or multiple generation-use
 steps leading from one entity to another.  Another distinctive feature
-is the use of <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-305-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mi>h</mi><mi>i</mi><mi>n</mi><mi>g</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-305">Things</script>, which correspond to changing, real-world
-things, as opposed to <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-306-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mi>n</mi><mi>t</mi><mi>i</mi><mi>t</mi><mi>i</mi><mi>e</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-306">Entities</script>, which correspond to limited views or
-perspectives on <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-307-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mi>h</mi><mi>i</mi><mi>n</mi><mi>g</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-307">Things</script>, with some fixed aspects.  The semantic
-structures of <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-308-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mi>h</mi><mi>i</mi><mi>n</mi><mi>g</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-308">Things</script> and <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-309-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mi>n</mi><mi>t</mi><mi>i</mi><mi>t</mi><mi>i</mi><mi>e</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-309">Entities</script> provides a foundation for the
-<span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-310-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mi>l</mi><mi>t</mi><mi>e</mi><mi>r</mi><mi>n</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>O</mi><mi>f</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-310">alternateOf</script> and <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-311-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi><mi>p</mi><mi>e</mi><mi>c</mi><mi>i</mi><mi>a</mi><mi>l</mi><mi>i</mi><mi>z</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mi>O</mi><mi>f</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-311">specializationOf</script> relations.
+is the use of <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-314-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mi>h</mi><mi>i</mi><mi>n</mi><mi>g</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-314">Things</script>, which correspond to changing, real-world
+things, as opposed to <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-315-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mi>n</mi><mi>t</mi><mi>i</mi><mi>t</mi><mi>i</mi><mi>e</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-315">Entities</script>, which correspond to limited views or
+perspectives on <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-316-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mi>h</mi><mi>i</mi><mi>n</mi><mi>g</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-316">Things</script>, with some fixed aspects.  The semantic
+structures of <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-317-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mi>h</mi><mi>i</mi><mi>n</mi><mi>g</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-317">Things</script> and <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-318-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mi>n</mi><mi>t</mi><mi>i</mi><mi>t</mi><mi>i</mi><mi>e</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-318">Entities</script> provides a foundation for the
+<span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-319-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mi>l</mi><mi>t</mi><mi>e</mi><mi>r</mi><mi>n</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>O</mi><mi>f</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-319">alternateOf</script> and <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-320-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi><mi>p</mi><mi>e</mi><mi>c</mi><mi>i</mi><mi>a</mi><mi>l</mi><mi>i</mi><mi>z</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mi>O</mi><mi>f</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-320">specializationOf</script> relations.
 </p>
   
 
 
 </section>
 <section id="interpretations">
-<h3><span class="secno">3.5 </span> Interpretations </h3>
+<!--OddPage--><h2><span class="secno">7. </span> Interpretations </h2>
 
 <p>We need to link identifiers to the objects they denote.  We do this using a function which we shall call an <em>interpretation</em>.
- An interpretation is a function  <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-312-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="italic">ρ</mi><mo stretchy="false">:</mo><mi>I</mi><mi>d</mi><mi>e</mi><mi>n</mi><mi>t</mi><mi>i</mi><mi>f</mi><mi>i</mi><mi>e</mi><mi>r</mi><mi>s</mi><mo stretchy="false">→</mo><mi>O</mi><mi>b</mi><mi>j</mi><mi>e</mi><mi>c</mi><mi>t</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-312">\rho : Identifiers \to Objects</script> describing
+ An interpretation is a function  <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-321-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="italic">ρ</mi><mo stretchy="false">:</mo><mi>I</mi><mi>d</mi><mi>e</mi><mi>n</mi><mi>t</mi><mi>i</mi><mi>f</mi><mi>i</mi><mi>e</mi><mi>r</mi><mi>s</mi><mo stretchy="false">→</mo><mi>O</mi><mi>b</mi><mi>j</mi><mi>e</mi><mi>c</mi><mi>t</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-321">\rho : Identifiers \to Objects</script> describing
 which object is the target of each identifier. The mapping from
  identifiers to objects may <b>not</b> change over time; only
- <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-313-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>O</mi><mi>b</mi><mi>j</mi><mi>e</mi><mi>c</mi><mi>t</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-313">Objects</script> can be denoted by <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-314-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>I</mi><mi>d</mi><mi>e</mi><mi>n</mi><mi>t</mi><mi>i</mi><mi>f</mi><mi>i</mi><mi>e</mi><mi>r</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-314">Identifiers</script>.
+ <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-322-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>O</mi><mi>b</mi><mi>j</mi><mi>e</mi><mi>c</mi><mi>t</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-322">Objects</script> can be denoted by <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-323-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>I</mi><mi>d</mi><mi>e</mi><mi>n</mi><mi>t</mi><mi>i</mi><mi>f</mi><mi>i</mi><mi>e</mi><mi>r</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-323">Identifiers</script>.
 </p>
 </section>
 
 
-</section>
+
 <section id="semantics">
-<!--OddPage--><h2><span class="secno">4. </span> Semantics </h2>
-
-<p>In what follows, let <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-315-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>W</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-315">W</script> be a fixed structure with the associated sets and relations discussed in the previous section, and let <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-316-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="italic">ρ</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-316">\rho</script> be an interpretation of identifiers as objects in <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-317-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>W</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-317">W</script>.
+<!--OddPage--><h2><span class="secno">8. </span> Semantics </h2>
+
+<p>In what follows, let <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-324-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>W</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-324">W</script> be a fixed structure with the associated sets and relations discussed in the previous section, and let <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-325-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="italic">ρ</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-325">\rho</script> be an interpretation of identifiers as objects in <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-326-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>W</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-326">W</script>.
 The annotations [WF] refer to well-formedness constraints that correspond to typing constraints.
 </p>
 
 <section id="satisfaction">
-<h3><span class="secno">4.1 </span> Satisfaction </h3>
-
-<p>Consider a formula <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-318-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="italic">ϕ</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-318">\phi</script>, a structure <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-319-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>W</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-319">W</script> and an interpretation
- <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-320-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="italic">ρ</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-320">\rho</script>.
-We define notation <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-321-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>W</mi><mo stretchy="false">,</mo><mi mathvariant="italic">ρ</mi><mo stretchy="false">⊨</mo><mi mathvariant="italic">ϕ</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-321">W,\rho \models \phi</script> which means that <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-322-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="italic">ϕ</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-322">\phi</script> is
- satisfied in <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-323-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>W</mi><mo stretchy="false">,</mo><mi mathvariant="italic">ρ</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-323">W,\rho</script>. For atomic formulas, the definition of the
+<h3><span class="secno">8.1 </span> Satisfaction </h3>
+
+<p>Consider a formula <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-327-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="italic">ϕ</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-327">\phi</script>, a structure <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-328-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>W</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-328">W</script> and an interpretation
+ <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-329-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="italic">ρ</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-329">\rho</script>.
+We define notation <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-330-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>W</mi><mo stretchy="false">,</mo><mi mathvariant="italic">ρ</mi><mo stretchy="false">⊨</mo><mi mathvariant="italic">ϕ</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-330">W,\rho \models \phi</script> which means that <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-331-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="italic">ϕ</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-331">\phi</script> is
+ satisfied in <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-332-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>W</mi><mo stretchy="false">,</mo><mi mathvariant="italic">ρ</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-332">W,\rho</script>. For atomic formulas, the definition of the
  satisfaction relation is given in the next few subsections.  We give
  the standard definition of the semantics of the other formulas:
 </p>
 
 <div class="semantics" id="first-order-logic-semantics" data-count="16" data-title="Semantics 16 (first-order-logic-semantics)"><div class="ruleTitle"><a class="internalDFN" href="#first-order-logic-semantics">Semantics 16 (first-order-logic-semantics)</a></div>
 <ol>
-  <li><span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-324-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>W</mi><mo stretchy="false">,</mo><mi mathvariant="italic">ρ</mi><mo stretchy="false">⊨</mo><mi>T</mi><mi>r</mi><mi>u</mi><mi>e</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-324">W,\rho \models True</script> always holds.</li>
-  <li><span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-325-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>W</mi><mo stretchy="false">,</mo><mi mathvariant="italic">ρ</mi><mo stretchy="false">⊨</mo><mi>F</mi><mi>a</mi><mi>l</mi><mi>s</mi><mi>e</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-325">W,\rho \models False</script> never holds.</li>
-  <li><span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-326-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>W</mi><mo stretchy="false">,</mo><mi mathvariant="italic">ρ</mi><mo stretchy="false">⊨</mo><mi>x</mi><mo stretchy="false">=</mo><mi>y</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-326">W,\rho \models x = y</script> holds if and only if <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-327-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="italic">ρ</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mi mathvariant="italic">ρ</mi><mo stretchy="false">(</mo><mi>y</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-327">\rho(x) =
+  <li><span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-333-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>W</mi><mo stretchy="false">,</mo><mi mathvariant="italic">ρ</mi><mo stretchy="false">⊨</mo><mi>T</mi><mi>r</mi><mi>u</mi><mi>e</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-333">W,\rho \models True</script> always holds.</li>
+  <li><span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-334-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>W</mi><mo stretchy="false">,</mo><mi mathvariant="italic">ρ</mi><mo stretchy="false">⊨</mo><mi>F</mi><mi>a</mi><mi>l</mi><mi>s</mi><mi>e</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-334">W,\rho \models False</script> never holds.</li>
+  <li><span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-335-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>W</mi><mo stretchy="false">,</mo><mi mathvariant="italic">ρ</mi><mo stretchy="false">⊨</mo><mi>x</mi><mo stretchy="false">=</mo><mi>y</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-335">W,\rho \models x = y</script> holds if and only if <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-336-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="italic">ρ</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mi mathvariant="italic">ρ</mi><mo stretchy="false">(</mo><mi>y</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-336">\rho(x) =
     \rho(y)</script>.</li>
-  <li><span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-328-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>W</mi><mo stretchy="false">,</mo><mi mathvariant="italic">ρ</mi><mo stretchy="false">⊨</mo><mi mathvariant="normal">¬</mi><mi mathvariant="italic">ϕ</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-328">W,\rho \models \neg \phi</script> holds if and only if <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-329-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>W</mi><mo stretchy="false">,</mo><mi mathvariant="italic">ρ</mi><mo stretchy="false">⊨</mo><mi mathvariant="italic">ϕ</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-329">W,\rho \models
+  <li><span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-337-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>W</mi><mo stretchy="false">,</mo><mi mathvariant="italic">ρ</mi><mo stretchy="false">⊨</mo><mi mathvariant="normal">¬</mi><mi mathvariant="italic">ϕ</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-337">W,\rho \models \neg \phi</script> holds if and only if <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-338-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>W</mi><mo stretchy="false">,</mo><mi mathvariant="italic">ρ</mi><mo stretchy="false">⊨</mo><mi mathvariant="italic">ϕ</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-338">W,\rho \models
   \phi</script> does not hold.</li>
-  <li><span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-330-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>W</mi><mo stretchy="false">,</mo><mi mathvariant="italic">ρ</mi><mo stretchy="false">⊨</mo><mi mathvariant="italic">ϕ</mi><mo stretchy="false">∧</mo><mi mathvariant="italic">ψ</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-330">W,\rho \models \phi \wedge \psi</script> holds if and only if <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-331-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>W</mi><mo stretchy="false">,</mo><mi mathvariant="italic">ρ</mi><mo stretchy="false">⊨</mo><mi mathvariant="italic">ϕ</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-331">W,\rho \models
-  \phi</script> and <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-332-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>W</mi><mo stretchy="false">,</mo><mi mathvariant="italic">ρ</mi><mo stretchy="false">⊨</mo><mi mathvariant="italic">ψ</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-332">W,\rho \models \psi</script>.</li>
-  <li><span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-333-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>W</mi><mo stretchy="false">,</mo><mi mathvariant="italic">ρ</mi><mo stretchy="false">⊨</mo><mi mathvariant="italic">ϕ</mi><mo stretchy="false">∨</mo><mi mathvariant="italic">ψ</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-333">W,\rho \models \phi \vee \psi</script> holds if either <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-334-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>W</mi><mo stretchy="false">,</mo><mi mathvariant="italic">ρ</mi><mo stretchy="false">⊨</mo><mi mathvariant="italic">ϕ</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-334">W,\rho \models \phi</script>
-  or <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-335-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>W</mi><mo stretchy="false">,</mo><mi mathvariant="italic">ρ</mi><mo stretchy="false">⊨</mo><mi mathvariant="italic">ψ</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-335">W,\rho \models \psi</script>.</li>
-  <li><span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-336-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>W</mi><mo stretchy="false">,</mo><mi mathvariant="italic">ρ</mi><mo stretchy="false">⊨</mo><mi mathvariant="italic">ϕ</mi><mo stretchy="false">⇒</mo><mi mathvariant="italic">ψ</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-336">W,\rho \models \phi \Rightarrow \psi</script> holds if <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-337-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>W</mi><mo stretchy="false">,</mo><mi mathvariant="italic">ρ</mi><mo stretchy="false">⊨</mo><mi mathvariant="italic">ϕ</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-337">W,\rho \models \phi</script>
-  implies <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-338-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>W</mi><mo stretchy="false">,</mo><mi mathvariant="italic">ρ</mi><mo stretchy="false">⊨</mo><mi mathvariant="italic">ψ</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-338">W,\rho \models \psi</script>.</li>
-  <li><span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-339-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>W</mi><mo stretchy="false">,</mo><mi mathvariant="italic">ρ</mi><mo stretchy="false">⊨</mo><mi mathvariant="normal">∃</mi><mi>x</mi><mo>.</mo><mi mathvariant="italic">ϕ</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-339">W,\rho \models \exists x. \phi</script> holds if there exists some <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-340-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>o</mi><mi>b</mi><mi>j</mi><mo stretchy="false">∈</mo><mi>O</mi><mi>b</mi><mi>j</mi><mi>e</mi><mi>c</mi><mi>t</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-340">obj \in
-  Objects</script> such that <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-341-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>W</mi><mo stretchy="false">,</mo><mi mathvariant="italic">ρ</mi><mo stretchy="false">[</mo><mi>x</mi><mo stretchy="false">:=</mo><mi>o</mi><mi>b</mi><mi>j</mi><mo stretchy="false">]</mo><mo stretchy="false">⊨</mo><mi mathvariant="italic">ϕ</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-341">W,\rho[x:=obj] \models \phi</script>.</li>
-  <li><span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-342-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>W</mi><mo stretchy="false">,</mo><mi mathvariant="italic">ρ</mi><mo stretchy="false">⊨</mo><mi mathvariant="normal">∀</mi><mi>x</mi><mo>.</mo><mi mathvariant="italic">ϕ</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-342">W,\rho \models \forall x. \phi</script> holds if there for every <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-343-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>o</mi><mi>b</mi><mi>j</mi><mo stretchy="false">∈</mo><mi>O</mi><mi>b</mi><mi>j</mi><mi>e</mi><mi>c</mi><mi>t</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-343">obj \in
-  Objects</script> we have <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-344-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>W</mi><mo stretchy="false">,</mo><mi mathvariant="italic">ρ</mi><mo stretchy="false">[</mo><mi>x</mi><mo stretchy="false">:=</mo><mi>o</mi><mi>b</mi><mi>j</mi><mo stretchy="false">]</mo><mo stretchy="false">⊨</mo><mi mathvariant="italic">ϕ</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-344">W,\rho[x:=obj] \models \phi</script>.</li>
+  <li><span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-339-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>W</mi><mo stretchy="false">,</mo><mi mathvariant="italic">ρ</mi><mo stretchy="false">⊨</mo><mi mathvariant="italic">ϕ</mi><mo stretchy="false">∧</mo><mi mathvariant="italic">ψ</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-339">W,\rho \models \phi \wedge \psi</script> holds if and only if <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-340-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>W</mi><mo stretchy="false">,</mo><mi mathvariant="italic">ρ</mi><mo stretchy="false">⊨</mo><mi mathvariant="italic">ϕ</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-340">W,\rho \models
+  \phi</script> and <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-341-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>W</mi><mo stretchy="false">,</mo><mi mathvariant="italic">ρ</mi><mo stretchy="false">⊨</mo><mi mathvariant="italic">ψ</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-341">W,\rho \models \psi</script>.</li>
+  <li><span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-342-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>W</mi><mo stretchy="false">,</mo><mi mathvariant="italic">ρ</mi><mo stretchy="false">⊨</mo><mi mathvariant="italic">ϕ</mi><mo stretchy="false">∨</mo><mi mathvariant="italic">ψ</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-342">W,\rho \models \phi \vee \psi</script> holds if either <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-343-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>W</mi><mo stretchy="false">,</mo><mi mathvariant="italic">ρ</mi><mo stretchy="false">⊨</mo><mi mathvariant="italic">ϕ</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-343">W,\rho \models \phi</script>
+  or <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-344-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>W</mi><mo stretchy="false">,</mo><mi mathvariant="italic">ρ</mi><mo stretchy="false">⊨</mo><mi mathvariant="italic">ψ</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-344">W,\rho \models \psi</script>.</li>
+  <li><span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-345-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>W</mi><mo stretchy="false">,</mo><mi mathvariant="italic">ρ</mi><mo stretchy="false">⊨</mo><mi mathvariant="italic">ϕ</mi><mo stretchy="false">⇒</mo><mi mathvariant="italic">ψ</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-345">W,\rho \models \phi \Rightarrow \psi</script> holds if <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-346-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>W</mi><mo stretchy="false">,</mo><mi mathvariant="italic">ρ</mi><mo stretchy="false">⊨</mo><mi mathvariant="italic">ϕ</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-346">W,\rho \models \phi</script>
+  implies <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-347-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>W</mi><mo stretchy="false">,</mo><mi mathvariant="italic">ρ</mi><mo stretchy="false">⊨</mo><mi mathvariant="italic">ψ</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-347">W,\rho \models \psi</script>.</li>
+  <li><span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-348-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>W</mi><mo stretchy="false">,</mo><mi mathvariant="italic">ρ</mi><mo stretchy="false">⊨</mo><mi mathvariant="normal">∃</mi><mi>x</mi><mo>.</mo><mi mathvariant="italic">ϕ</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-348">W,\rho \models \exists x. \phi</script> holds if there exists some <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-349-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>o</mi><mi>b</mi><mi>j</mi><mo stretchy="false">∈</mo><mi>O</mi><mi>b</mi><mi>j</mi><mi>e</mi><mi>c</mi><mi>t</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-349">obj \in
+  Objects</script> such that <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-350-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>W</mi><mo stretchy="false">,</mo><mi mathvariant="italic">ρ</mi><mo stretchy="false">[</mo><mi>x</mi><mo stretchy="false">:=</mo><mi>o</mi><mi>b</mi><mi>j</mi><mo stretchy="false">]</mo><mo stretchy="false">⊨</mo><mi mathvariant="italic">ϕ</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-350">W,\rho[x:=obj] \models \phi</script>.</li>
+  <li><span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-351-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>W</mi><mo stretchy="false">,</mo><mi mathvariant="italic">ρ</mi><mo stretchy="false">⊨</mo><mi mathvariant="normal">∀</mi><mi>x</mi><mo>.</mo><mi mathvariant="italic">ϕ</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-351">W,\rho \models \forall x. \phi</script> holds if there for every <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-352-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>o</mi><mi>b</mi><mi>j</mi><mo stretchy="false">∈</mo><mi>O</mi><mi>b</mi><mi>j</mi><mi>e</mi><mi>c</mi><mi>t</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-352">obj \in
+  Objects</script> we have <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-353-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>W</mi><mo stretchy="false">,</mo><mi mathvariant="italic">ρ</mi><mo stretchy="false">[</mo><mi>x</mi><mo stretchy="false">:=</mo><mi>o</mi><mi>b</mi><mi>j</mi><mo stretchy="false">]</mo><mo stretchy="false">⊨</mo><mi mathvariant="italic">ϕ</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-353">W,\rho[x:=obj] \models \phi</script>.</li>
   </ol></div>
 
 <div class="remark">
   <p>In the semantics above, note that the domain of quantification is
-  the set of <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-345-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>O</mi><mi>b</mi><mi>j</mi><mi>e</mi><mi>c</mi><mi>t</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-345">Objects</script>; that is, quantifiers range over entities,
+  the set of <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-354-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>O</mi><mi>b</mi><mi>j</mi><mi>e</mi><mi>c</mi><mi>t</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-354">Objects</script>; that is, quantifiers range over entities,
   activities, agents, or influences (which are in turn further
-  subdivided into types of influences).  <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-346-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mi>h</mi><mi>i</mi><mi>n</mi><mi>g</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-346">Things</script> and relations
+  subdivided into types of influences).  <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-355-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mi>h</mi><mi>i</mi><mi>n</mi><mi>g</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-355">Things</script> and relations
   cannot be referenced directly by identifiers.  
 </p>
   </div>
 
   <div class="remark">
-    <p>A PROV instance <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-347-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>I</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-347">I</script> consists of a set of statements, each of
+    <p>A PROV instance <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-356-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>I</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-356">I</script> consists of a set of statements, each of
     which can be translated to an atomic formula following the
     definitional rules in PROV-CONSTRAINTS, possibly by introducing
     fresh existential variables.  Thus, we can view an
-    instance <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-348-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>I</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-348">I</script> as a set of atomic formulas <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-349-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mo fence="false" stretchy="false">{</mo><msub><mi mathvariant="italic">ϕ</mi><mn>1</mn></msub><mo stretchy="false">,</mo><mo stretchy="false">…</mo><mo stretchy="false">,</mo><msub><mi mathvariant="italic">ϕ</mi><mi>n</mi></msub><mo fence="false" stretchy="false">}</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-349">\{\phi_1,\ldots,\phi_n\}</script>, or equivalently a
-    single formula <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-350-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">∃</mi><msub><mi>x</mi><mn>1</mn></msub><mo stretchy="false">,</mo><mo stretchy="false">…</mo><mo stretchy="false">,</mo><msub><mi>x</mi><mi>k</mi></msub><mo>.</mo><mtext>&nbsp;</mtext><msub><mi mathvariant="italic">ϕ</mi><mn>1</mn></msub><mo stretchy="false">∧</mo><mo stretchy="false">⋯</mo><mo stretchy="false">∧</mo><msub><mi mathvariant="italic">ϕ</mi><mi>n</mi></msub></math></span></span></span><script type="math/tex" id="MathJax-Element-350">\exists x_1,\ldots,x_k.~\phi_1 \wedge \cdots
-    \wedge \phi_n</script>, where <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-351-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>x</mi><mn>1</mn></msub><mo stretchy="false">,</mo><mo stretchy="false">…</mo><mo stretchy="false">,</mo><msub><mi>x</mi><mi>k</mi></msub></math></span></span></span><script type="math/tex" id="MathJax-Element-351">x_1,\ldots,x_k</script> are the existential
-    variables of <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-352-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>I</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-352">I</script>.
+    instance <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-357-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>I</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-357">I</script> as a set of atomic formulas <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-358-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mo fence="false" stretchy="false">{</mo><msub><mi mathvariant="italic">ϕ</mi><mn>1</mn></msub><mo stretchy="false">,</mo><mo stretchy="false">…</mo><mo stretchy="false">,</mo><msub><mi mathvariant="italic">ϕ</mi><mi>n</mi></msub><mo fence="false" stretchy="false">}</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-358">\{\phi_1,\ldots,\phi_n\}</script>, or equivalently a
+    single formula <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-359-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">∃</mi><msub><mi>x</mi><mn>1</mn></msub><mo stretchy="false">,</mo><mo stretchy="false">…</mo><mo stretchy="false">,</mo><msub><mi>x</mi><mi>k</mi></msub><mo>.</mo><mtext>&nbsp;</mtext><msub><mi mathvariant="italic">ϕ</mi><mn>1</mn></msub><mo stretchy="false">∧</mo><mo stretchy="false">⋯</mo><mo stretchy="false">∧</mo><msub><mi mathvariant="italic">ϕ</mi><mi>n</mi></msub></math></span></span></span><script type="math/tex" id="MathJax-Element-359">\exists x_1,\ldots,x_k.~\phi_1 \wedge \cdots
+    \wedge \phi_n</script>, where <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-360-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>x</mi><mn>1</mn></msub><mo stretchy="false">,</mo><mo stretchy="false">…</mo><mo stretchy="false">,</mo><msub><mi>x</mi><mi>k</mi></msub></math></span></span></span><script type="math/tex" id="MathJax-Element-360">x_1,\ldots,x_k</script> are the existential
+    variables of <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-361-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>I</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-361">I</script>.
     </p>
     </div>
 
 </section>
     <section id="attribute-matching">
     
-<h3><span class="secno">4.2 </span> Attribute matching </h3>
-
-
-<p>We say that an object <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-353-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>o</mi><mi>b</mi><mi>j</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-353">obj</script> matches attributes <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-354-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mo stretchy="false">[</mo><mi>a</mi><mi>t</mi><mi>t</mi><msub><mi>r</mi><mn>1</mn></msub><mo stretchy="false">=</mo><mi>v</mi><mi>a</mi><msub><mi>l</mi><mn>1</mn></msub><mo stretchy="false">,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo stretchy="false">]</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-354">[attr_1=val_1,...]</script> in structure <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-355-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>W</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-355">W</script> provided:
-for each attribute <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-356-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mi>t</mi><mi>t</mi><msub><mi>r</mi><mi>i</mi></msub></math></span></span></span><script type="math/tex" id="MathJax-Element-356">attr_i</script>, we have <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-357-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mi>a</mi><msub><mi>l</mi><mi>i</mi></msub><mo stretchy="false">∈</mo><mi>W</mi><mo>.</mo><mi>v</mi><mi>a</mi><mi>l</mi><mi>u</mi><mi>e</mi><mo stretchy="false">(</mo><mi>o</mi><mi>b</mi><mi>j</mi><mo stretchy="false">,</mo><mi>a</mi><mi>t</mi><mi>t</mi><msub><mi>r</mi><mi>i</mi></msub><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-357">val_i \in W.value(obj,attr_i)</script>.
-This is sometimes abbreviated as: <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-358-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mi>a</mi><mi>t</mi><mi>c</mi><mi>h</mi><mo stretchy="false">(</mo><mi>W</mi><mo stretchy="false">,</mo><mi>o</mi><mi>b</mi><mi>j</mi><mo stretchy="false">,</mo><mi>a</mi><mi>t</mi><mi>t</mi><mi>r</mi><mi>s</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-358">match(W,obj,attrs)</script>.
+<h3><span class="secno">8.2 </span> Attribute matching </h3>
+
+
+<p>We say that an object <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-362-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>o</mi><mi>b</mi><mi>j</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-362">obj</script> matches attributes <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-363-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mo stretchy="false">[</mo><mi>a</mi><mi>t</mi><mi>t</mi><msub><mi>r</mi><mn>1</mn></msub><mo stretchy="false">=</mo><mi>v</mi><mi>a</mi><msub><mi>l</mi><mn>1</mn></msub><mo stretchy="false">,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo stretchy="false">]</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-363">[attr_1=val_1,...]</script> in structure <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-364-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>W</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-364">W</script> provided:
+for each attribute <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-365-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mi>t</mi><mi>t</mi><msub><mi>r</mi><mi>i</mi></msub></math></span></span></span><script type="math/tex" id="MathJax-Element-365">attr_i</script>, we have <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-366-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mi>a</mi><msub><mi>l</mi><mi>i</mi></msub><mo stretchy="false">∈</mo><mi>W</mi><mo>.</mo><mi>v</mi><mi>a</mi><mi>l</mi><mi>u</mi><mi>e</mi><mo stretchy="false">(</mo><mi>o</mi><mi>b</mi><mi>j</mi><mo stretchy="false">,</mo><mi>a</mi><mi>t</mi><mi>t</mi><msub><mi>r</mi><mi>i</mi></msub><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-366">val_i \in W.value(obj,attr_i)</script>.
+This is sometimes abbreviated as: <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-367-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mi>a</mi><mi>t</mi><mi>c</mi><mi>h</mi><mo stretchy="false">(</mo><mi>W</mi><mo stretchy="false">,</mo><mi>o</mi><mi>b</mi><mi>j</mi><mo stretchy="false">,</mo><mi>a</mi><mi>t</mi><mi>t</mi><mi>r</mi><mi>s</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-367">match(W,obj,attrs)</script>.
 </p>
     
 </section>
 
 <section id="semantics-of-element-formulas">
-<h3><span class="secno">4.3 </span> Semantics of Element Formulas </h3>
+<h3><span class="secno">8.3 </span> Semantics of Element Formulas </h3>
 
 <section id="entity">
 
-<h4><span class="secno">4.3.1 </span> Entity </h4>
-
-<p>An entity formula is of the form <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-359-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi><mi>n</mi><mi>t</mi><mi>i</mi><mi>t</mi><mi>y</mi><mo stretchy="false">(</mo><mi>i</mi><mi>d</mi><mo stretchy="false">,</mo><mi>a</mi><mi>t</mi><mi>t</mi><mi>r</mi><mi>s</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-359">entity(id,attrs)</script> where <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-360-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>i</mi><mi>d</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-360">id</script> denotes an entity.
+<h4><span class="secno">8.3.1 </span> Entity </h4>
+
+<p>An entity formula is of the form <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-368-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi><mi>n</mi><mi>t</mi><mi>i</mi><mi>t</mi><mi>y</mi><mo stretchy="false">(</mo><mi>i</mi><mi>d</mi><mo stretchy="false">,</mo><mi>a</mi><mi>t</mi><mi>t</mi><mi>r</mi><mi>s</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-368">entity(id,attrs)</script> where <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-369-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>i</mi><mi>d</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-369">id</script> denotes an entity.
 </p>
-<p>Entity formulas <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-361-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi><mi>n</mi><mi>t</mi><mi>i</mi><mi>t</mi><mi>y</mi><mo stretchy="false">(</mo><mi>i</mi><mi>d</mi><mo stretchy="false">,</mo><mi>a</mi><mi>t</mi><mi>t</mi><mi>r</mi><mi>s</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-361">entity(id,attrs)</script> can be interpreted as follows:
+<p>Entity formulas <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-370-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi><mi>n</mi><mi>t</mi><mi>i</mi><mi>t</mi><mi>y</mi><mo stretchy="false">(</mo><mi>i</mi><mi>d</mi><mo stretchy="false">,</mo><mi>a</mi><mi>t</mi><mi>t</mi><mi>r</mi><mi>s</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-370">entity(id,attrs)</script> can be interpreted as follows:
 </p>
 <div class="semantics" id="entity-semantics" data-count="17" data-title="Semantics 17 (entity-semantics)"><div class="ruleTitle"><a class="internalDFN" href="#entity-semantics">Semantics 17 (entity-semantics)</a></div>
- <p><span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-362-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>W</mi><mo stretchy="false">,</mo><mi mathvariant="italic">ρ</mi><mo stretchy="false">⊨</mo><mi>e</mi><mi>n</mi><mi>t</mi><mi>i</mi><mi>t</mi><mi>y</mi><mo stretchy="false">(</mo><mi>i</mi><mi>d</mi><mo stretchy="false">,</mo><mi>a</mi><mi>t</mi><mi>t</mi><mi>r</mi><mi>s</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-362">W,\rho \models entity(id,attrs)</script> holds if and only if:</p>
+ <p><span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-371-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>W</mi><mo stretchy="false">,</mo><mi mathvariant="italic">ρ</mi><mo stretchy="false">⊨</mo><mi>e</mi><mi>n</mi><mi>t</mi><mi>i</mi><mi>t</mi><mi>y</mi><mo stretchy="false">(</mo><mi>i</mi><mi>d</mi><mo stretchy="false">,</mo><mi>a</mi><mi>t</mi><mi>t</mi><mi>r</mi><mi>s</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-371">W,\rho \models entity(id,attrs)</script> holds if and only if:</p>
 <ol>
-<li>[WF] <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-363-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>i</mi><mi>d</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-363">id</script> denotes an entity <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-364-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi><mi>n</mi><mi>t</mi><mo stretchy="false">=</mo><mi mathvariant="italic">ρ</mi><mo stretchy="false">(</mo><mi>i</mi><mi>d</mi><mo stretchy="false">)</mo><mo stretchy="false">∈</mo><mi>E</mi><mi>n</mi><mi>t</mi><mi>i</mi><mi>t</mi><mi>i</mi><mi>e</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-364">ent = \rho(id) \in Entities</script>
+<li>[WF] <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-372-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>i</mi><mi>d</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-372">id</script> denotes an entity <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-373-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi><mi>n</mi><mi>t</mi><mo stretchy="false">=</mo><mi mathvariant="italic">ρ</mi><mo stretchy="false">(</mo><mi>i</mi><mi>d</mi><mo stretchy="false">)</mo><mo stretchy="false">∈</mo><mi>E</mi><mi>n</mi><mi>t</mi><mi>i</mi><mi>t</mi><mi>i</mi><mi>e</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-373">ent = \rho(id) \in Entities</script>
 </li>
-<li>There exists <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-365-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mi>e</mi><mi>n</mi><mo stretchy="false">,</mo><mi>a</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-365">gen,a</script> such that <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-366-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mi>e</mi><mi>n</mi><mi>e</mi><mi>r</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>g</mi><mi>e</mi><mi>n</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>e</mi><mo stretchy="false">,</mo><mi>a</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-366">generated(gen) = (e,a)</script>.</li>
-<li>There exists <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-367-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>i</mi><mi>n</mi><mi>v</mi><mo stretchy="false">,</mo><msup><mi>a</mi><mo>′</mo></msup></math></span></span></span><script type="math/tex" id="MathJax-Element-367">inv,a'</script> such that <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-368-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>i</mi><mi>n</mi><mi>v</mi><mi>a</mi><mi>l</mi><mi>i</mi><mi>d</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>i</mi><mi>n</mi><mi>v</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>e</mi><mo stretchy="false">,</mo><mi>a</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-368">invalidated(inv) = (e,a)</script>.</li>
-<li>the attributes match: <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-369-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mi>a</mi><mi>t</mi><mi>c</mi><mi>h</mi><mo stretchy="false">(</mo><mi>W</mi><mo stretchy="false">,</mo><mi>e</mi><mi>n</mi><mi>t</mi><mo stretchy="false">,</mo><mi>a</mi><mi>t</mi><mi>t</mi><mi>r</mi><mi>s</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-369">match(W,ent, attrs)</script>.
+<li>the attributes match: <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-374-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mi>a</mi><mi>t</mi><mi>c</mi><mi>h</mi><mo stretchy="false">(</mo><mi>W</mi><mo stretchy="false">,</mo><mi>e</mi><mi>n</mi><mi>t</mi><mo stretchy="false">,</mo><mi>a</mi><mi>t</mi><mi>t</mi><mi>r</mi><mi>s</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-374">match(W,ent, attrs)</script>.
 </li>
 </ol>
 
@@ -2015,7 +1985,7 @@
 </div>
 <div class="remark">
 <p>Not all of the attributes of an entity object are
-  required to be present in an entity formula about that object.  For example, the following formulas all hold if <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-370-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-370">x</script> denotes an entity <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-371-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-371">e</script> such that <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-372-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mi>a</mi><mi>l</mi><mi>u</mi><mi>e</mi><mo stretchy="false">(</mo><mi>e</mi><mo stretchy="false">,</mo><mi>a</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo fence="false" stretchy="false">{</mo><mn>4</mn><mo stretchy="false">,</mo><mn>5</mn><mo fence="false" stretchy="false">}</mo><mo stretchy="false">,</mo><mi>v</mi><mi>a</mi><mi>l</mi><mi>u</mi><mi>e</mi><mo stretchy="false">(</mo><mi>e</mi><mo stretchy="false">,</mo><mi>b</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo fence="false" stretchy="false">{</mo><mn>6</mn><mo fence="false" stretchy="false">}</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-372">value(e,a) = \{4,5\}, value(e,b) = \{6\}</script> hold:
+  required to be present in an entity formula about that object.  For example, the following formulas all hold if <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-375-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-375">x</script> denotes an entity <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-376-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-376">e</script> such that <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-377-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mi>a</mi><mi>l</mi><mi>u</mi><mi>e</mi><mo stretchy="false">(</mo><mi>e</mi><mo stretchy="false">,</mo><mi>a</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo fence="false" stretchy="false">{</mo><mn>4</mn><mo stretchy="false">,</mo><mn>5</mn><mo fence="false" stretchy="false">}</mo><mo stretchy="false">,</mo><mi>v</mi><mi>a</mi><mi>l</mi><mi>u</mi><mi>e</mi><mo stretchy="false">(</mo><mi>e</mi><mo stretchy="false">,</mo><mi>b</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo fence="false" stretchy="false">{</mo><mn>6</mn><mo fence="false" stretchy="false">}</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-377">value(e,a) = \{4,5\}, value(e,b) = \{6\}</script> hold:
 </p><pre> entity(x,[])
  entity(x,[a=5])
  entity(x,[a=4,a=5])
@@ -2031,44 +2001,44 @@
   </section>
 <section id="activity">
 
-<h4><span class="secno">4.3.2 </span> Activity </h4>
-
-<p>An activity formula  is of the form <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-373-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mi>c</mi><mi>t</mi><mi>i</mi><mi>v</mi><mi>i</mi><mi>t</mi><mi>y</mi><mo stretchy="false">(</mo><mi>i</mi><mi>d</mi><mo stretchy="false">,</mo><mi>s</mi><mi>t</mi><mo stretchy="false">,</mo><mi>e</mi><mi>t</mi><mo stretchy="false">,</mo><mi>a</mi><mi>t</mi><mi>t</mi><mi>r</mi><mi>s</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-373">activity(id,st,et,attrs)</script>
-where <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-374-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>i</mi><mi>d</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-374">id</script> is a identifier referring to the activity, <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-375-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi><mi>t</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-375">st</script> is a start
-time and <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-376-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi><mi>t</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-376">et</script> is an end time, and <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-377-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mi>t</mi><mi>t</mi><mi>r</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-377">attrs</script> are the attributes of
-activity <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-378-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>i</mi><mi>d</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-378">id</script>.
+<h4><span class="secno">8.3.2 </span> Activity </h4>
+
+<p>An activity formula  is of the form <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-378-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mi>c</mi><mi>t</mi><mi>i</mi><mi>v</mi><mi>i</mi><mi>t</mi><mi>y</mi><mo stretchy="false">(</mo><mi>i</mi><mi>d</mi><mo stretchy="false">,</mo><mi>s</mi><mi>t</mi><mo stretchy="false">,</mo><mi>e</mi><mi>t</mi><mo stretchy="false">,</mo><mi>a</mi><mi>t</mi><mi>t</mi><mi>r</mi><mi>s</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-378">activity(id,st,et,attrs)</script>
+where <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-379-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>i</mi><mi>d</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-379">id</script> is a identifier referring to the activity, <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-380-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi><mi>t</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-380">st</script> is a start
+time and <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-381-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi><mi>t</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-381">et</script> is an end time, and <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-382-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mi>t</mi><mi>t</mi><mi>r</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-382">attrs</script> are the attributes of
+activity <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-383-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>i</mi><mi>d</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-383">id</script>.
 </p>
 <div class="semantics" id="activity-semantics" data-count="18" data-title="Semantics 18 (activity-semantics)"><div class="ruleTitle"><a class="internalDFN" href="#activity-semantics">Semantics 18 (activity-semantics)</a></div>
-  <p><span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-379-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>W</mi><mo stretchy="false">,</mo><mi mathvariant="italic">ρ</mi><mo stretchy="false">⊨</mo><mi>a</mi><mi>c</mi><mi>t</mi><mi>i</mi><mi>v</mi><mi>i</mi><mi>t</mi><mi>y</mi><mo stretchy="false">(</mo><mi>i</mi><mi>d</mi><mo stretchy="false">,</mo><mi>s</mi><mi>t</mi><mo stretchy="false">,</mo><mi>e</mi><mi>t</mi><mo stretchy="false">,</mo><mi>a</mi><mi>t</mi><mi>t</mi><mi>r</mi><mi>s</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-379">W,\rho \models activity(id,st,et,attrs)</script>
+  <p><span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-384-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>W</mi><mo stretchy="false">,</mo><mi mathvariant="italic">ρ</mi><mo stretchy="false">⊨</mo><mi>a</mi><mi>c</mi><mi>t</mi><mi>i</mi><mi>v</mi><mi>i</mi><mi>t</mi><mi>y</mi><mo stretchy="false">(</mo><mi>i</mi><mi>d</mi><mo stretchy="false">,</mo><mi>s</mi><mi>t</mi><mo stretchy="false">,</mo><mi>e</mi><mi>t</mi><mo stretchy="false">,</mo><mi>a</mi><mi>t</mi><mi>t</mi><mi>r</mi><mi>s</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-384">W,\rho \models activity(id,st,et,attrs)</script>
   holds if and only if:</p>
 <ol>
-<li>[WF] The identifier <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-380-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>i</mi><mi>d</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-380">id</script> maps to an activity <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-381-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mi>c</mi><mi>t</mi><mo stretchy="false">=</mo><mi mathvariant="italic">ρ</mi><mo stretchy="false">(</mo><mi>i</mi><mi>d</mi><mo stretchy="false">)</mo><mo stretchy="false">∈</mo><mi>A</mi><mi>c</mi><mi>t</mi><mi>i</mi><mi>v</mi><mi>i</mi><mi>t</mi><mi>i</mi><mi>e</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-381">act = \rho(id) \in Activities</script>
-</li>
-<li><span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-382-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="italic">ρ</mi><mo stretchy="false">(</mo><mi>s</mi><mi>t</mi><mo stretchy="false">)</mo><mo stretchy="false">∈</mo><mi>T</mi><mi>i</mi><mi>m</mi><mi>e</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-382">\rho(st) \in Times</script> is the activity's start time, that is:
-<span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-383-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi><mi>t</mi><mi>a</mi><mi>r</mi><mi>t</mi><mi>T</mi><mi>i</mi><mi>m</mi><mi>e</mi><mo stretchy="false">(</mo><mi>i</mi><mi>d</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mi mathvariant="italic">ρ</mi><mo stretchy="false">(</mo><mi>s</mi><mi>t</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-383">startTime(id) = \rho(st)</script>
+<li>[WF] The identifier <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-385-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>i</mi><mi>d</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-385">id</script> maps to an activity <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-386-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mi>c</mi><mi>t</mi><mo stretchy="false">=</mo><mi mathvariant="italic">ρ</mi><mo stretchy="false">(</mo><mi>i</mi><mi>d</mi><mo stretchy="false">)</mo><mo stretchy="false">∈</mo><mi>A</mi><mi>c</mi><mi>t</mi><mi>i</mi><mi>v</mi><mi>i</mi><mi>t</mi><mi>i</mi><mi>e</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-386">act = \rho(id) \in Activities</script>
 </li>
-<li><span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-384-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="italic">ρ</mi><mo stretchy="false">(</mo><mi>e</mi><mi>t</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-384">\rho(et)</script> is the activity's end time, that is: <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-385-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi><mi>n</mi><mi>d</mi><mi>T</mi><mi>i</mi><mi>m</mi><mi>e</mi><mo stretchy="false">(</mo><mi>i</mi><mi>d</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mi mathvariant="italic">ρ</mi><mo stretchy="false">(</mo><mi>e</mi><mi>t</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-385">endTime(id) = \rho(et)</script>
+<li><span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-387-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="italic">ρ</mi><mo stretchy="false">(</mo><mi>s</mi><mi>t</mi><mo stretchy="false">)</mo><mo stretchy="false">∈</mo><mi>T</mi><mi>i</mi><mi>m</mi><mi>e</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-387">\rho(st) \in Times</script> is the activity's start time, that is:
+<span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-388-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi><mi>t</mi><mi>a</mi><mi>r</mi><mi>t</mi><mi>T</mi><mi>i</mi><mi>m</mi><mi>e</mi><mo stretchy="false">(</mo><mi>i</mi><mi>d</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mi mathvariant="italic">ρ</mi><mo stretchy="false">(</mo><mi>s</mi><mi>t</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-388">startTime(id) = \rho(st)</script>
 </li>
-<li>There exists <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-386-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi><mi>t</mi><mi>a</mi><mi>r</mi><mi>t</mi><mo stretchy="false">,</mo><mi>e</mi><mo stretchy="false">,</mo><mi>a</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-386">start,e,a</script> such that <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-387-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi><mi>t</mi><mi>a</mi><mi>r</mi><mi>t</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>s</mi><mi>t</mi><mi>a</mi><mi>r</mi><mi>t</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>a</mi><mi>c</mi><mi>t</mi><mo stretchy="false">,</mo><mi>e</mi><mo stretchy="false">,</mo><mi>a</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-387">started(start) = (act,e,a)</script>.</li>
-<li>There exists <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-388-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi><mi>n</mi><mi>d</mi><mo stretchy="false">,</mo><msup><mi>e</mi><mo>′</mo></msup><mo stretchy="false">,</mo><msup><mi>a</mi><mo>′</mo></msup></math></span></span></span><script type="math/tex" id="MathJax-Element-388">end,e',a'</script> such that <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-389-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi><mi>n</mi><mi>d</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>e</mi><mi>n</mi><mi>d</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>a</mi><mi>c</mi><mi>t</mi><mo stretchy="false">,</mo><msup><mi>e</mi><mo>′</mo></msup><mo stretchy="false">,</mo><msup><mi>a</mi><mo>′</mo></msup><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-389">ended(end) = (act,e',a')</script>.</li>
-<li>The attributes match: <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-390-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mi>a</mi><mi>t</mi><mi>c</mi><mi>h</mi><mo stretchy="false">(</mo><mi>W</mi><mo stretchy="false">,</mo><mi>a</mi><mi>c</mi><mi>t</mi><mo stretchy="false">,</mo><mi>a</mi><mi>t</mi><mi>t</mi><mi>r</mi><mi>s</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-390">match(W,act,attrs)</script>.
+<li><span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-389-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="italic">ρ</mi><mo stretchy="false">(</mo><mi>e</mi><mi>t</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-389">\rho(et)</script> is the activity's end time, that is: <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-390-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi><mi>n</mi><mi>d</mi><mi>T</mi><mi>i</mi><mi>m</mi><mi>e</mi><mo stretchy="false">(</mo><mi>i</mi><mi>d</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mi mathvariant="italic">ρ</mi><mo stretchy="false">(</mo><mi>e</mi><mi>t</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-390">endTime(id) = \rho(et)</script>
+</li>
+<li>There exists <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-391-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi><mi>t</mi><mi>a</mi><mi>r</mi><mi>t</mi><mo stretchy="false">,</mo><mi>e</mi><mo stretchy="false">,</mo><mi>a</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-391">start,e,a</script> such that <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-392-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi><mi>t</mi><mi>a</mi><mi>r</mi><mi>t</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>s</mi><mi>t</mi><mi>a</mi><mi>r</mi><mi>t</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>a</mi><mi>c</mi><mi>t</mi><mo stretchy="false">,</mo><mi>e</mi><mo stretchy="false">,</mo><mi>a</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-392">started(start) = (act,e,a)</script>.</li>
+<li>There exists <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-393-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi><mi>n</mi><mi>d</mi><mo stretchy="false">,</mo><msup><mi>e</mi><mo>′</mo></msup><mo stretchy="false">,</mo><msup><mi>a</mi><mo>′</mo></msup></math></span></span></span><script type="math/tex" id="MathJax-Element-393">end,e',a'</script> such that <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-394-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi><mi>n</mi><mi>d</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>e</mi><mi>n</mi><mi>d</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>a</mi><mi>c</mi><mi>t</mi><mo stretchy="false">,</mo><msup><mi>e</mi><mo>′</mo></msup><mo stretchy="false">,</mo><msup><mi>a</mi><mo>′</mo></msup><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-394">ended(end) = (act,e',a')</script>.</li>
+<li>The attributes match: <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-395-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mi>a</mi><mi>t</mi><mi>c</mi><mi>h</mi><mo stretchy="false">(</mo><mi>W</mi><mo stretchy="false">,</mo><mi>a</mi><mi>c</mi><mi>t</mi><mo stretchy="false">,</mo><mi>a</mi><mi>t</mi><mi>t</mi><mi>r</mi><mi>s</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-395">match(W,act,attrs)</script>.
 </li>
 </ol>
 </div>
 </section>
 <section id="agent">
 
-<h4><span class="secno">4.3.3 </span> Agent </h4>
-
-<p>An agent formula is of the form <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-391-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mi>g</mi><mi>e</mi><mi>n</mi><mi>t</mi><mo stretchy="false">(</mo><mi>i</mi><mi>d</mi><mo stretchy="false">,</mo><mi>a</mi><mi>t</mi><mi>t</mi><mi>r</mi><mi>s</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-391">agent(id,attrs)</script> where <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-392-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>i</mi><mi>d</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-392">id</script> denotes the agent and <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-393-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mi>t</mi><mi>t</mi><mi>r</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-393">attrs</script> describes additional attributes.
+<h4><span class="secno">8.3.3 </span> Agent </h4>
+
+<p>An agent formula is of the form <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-396-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mi>g</mi><mi>e</mi><mi>n</mi><mi>t</mi><mo stretchy="false">(</mo><mi>i</mi><mi>d</mi><mo stretchy="false">,</mo><mi>a</mi><mi>t</mi><mi>t</mi><mi>r</mi><mi>s</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-396">agent(id,attrs)</script> where <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-397-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>i</mi><mi>d</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-397">id</script> denotes the agent and <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-398-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mi>t</mi><mi>t</mi><mi>r</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-398">attrs</script> describes additional attributes.
 </p>
 <div class="semantics" id="agent-semantics" data-count="19" data-title="Semantics 19 (agent-semantics)"><div class="ruleTitle"><a class="internalDFN" href="#agent-semantics">Semantics 19 (agent-semantics)</a></div>
-  <p><span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-394-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>W</mi><mo stretchy="false">,</mo><mi mathvariant="italic">ρ</mi><mo stretchy="false">⊨</mo><mi>a</mi><mi>g</mi><mi>e</mi><mi>n</mi><mi>t</mi><mo stretchy="false">(</mo><mi>i</mi><mi>d</mi><mo stretchy="false">,</mo><mi>a</mi><mi>t</mi><mi>t</mi><mi>r</mi><mi>s</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-394">W,\rho \models agent(id,attrs)</script> holds if and only if:
+  <p><span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-399-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>W</mi><mo stretchy="false">,</mo><mi mathvariant="italic">ρ</mi><mo stretchy="false">⊨</mo><mi>a</mi><mi>g</mi><mi>e</mi><mi>n</mi><mi>t</mi><mo stretchy="false">(</mo><mi>i</mi><mi>d</mi><mo stretchy="false">,</mo><mi>a</mi><mi>t</mi><mi>t</mi><mi>r</mi><mi>s</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-399">W,\rho \models agent(id,attrs)</script> holds if and only if:
   </p>
   <ol>
-    <li>[WF] <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-395-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>i</mi><mi>d</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-395">id</script> denotes an agent <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-396-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mi>g</mi><mo stretchy="false">=</mo><mi mathvariant="italic">ρ</mi><mo stretchy="false">(</mo><mi>i</mi><mi>d</mi><mo stretchy="false">)</mo><mo stretchy="false">∈</mo><mi>A</mi><mi>g</mi><mi>e</mi><mi>n</mi><mi>t</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-396">ag = \rho(id) \in Agents</script>
+    <li>[WF] <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-400-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>i</mi><mi>d</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-400">id</script> denotes an agent <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-401-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mi>g</mi><mo stretchy="false">=</mo><mi mathvariant="italic">ρ</mi><mo stretchy="false">(</mo><mi>i</mi><mi>d</mi><mo stretchy="false">)</mo><mo stretchy="false">∈</mo><mi>A</mi><mi>g</mi><mi>e</mi><mi>n</mi><mi>t</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-401">ag = \rho(id) \in Agents</script>
     </li>
-    <li>The attributes match: <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-397-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mi>a</mi><mi>t</mi><mi>c</mi><mi>h</mi><mo stretchy="false">(</mo><mi>W</mi><mo stretchy="false">,</mo><mi>a</mi><mi>g</mi><mo stretchy="false">,</mo><mi>a</mi><mi>t</mi><mi>t</mi><mi>r</mi><mi>s</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-397">match(W,ag,attrs)</script>.
+    <li>The attributes match: <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-402-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mi>a</mi><mi>t</mi><mi>c</mi><mi>h</mi><mo stretchy="false">(</mo><mi>W</mi><mo stretchy="false">,</mo><mi>a</mi><mi>g</mi><mo stretchy="false">,</mo><mi>a</mi><mi>t</mi><mi>t</mi><mi>r</mi><mi>s</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-402">match(W,ag,attrs)</script>.
     </li>
   </ol>
 </div>
@@ -2076,215 +2046,215 @@
 </section>
 
 <section id="semantics-of-relations">
-<h3><span class="secno">4.4 </span> Semantics of Relations </h3>
+<h3><span class="secno">8.4 </span> Semantics of Relations </h3>
 
 
 <section id="generation">
-<h4><span class="secno">4.4.1 </span> Generation </h4>
+<h4><span class="secno">8.4.1 </span> Generation </h4>
 
 <p>The generation formula is of the form
-<span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-398-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>w</mi><mi>a</mi><mi>s</mi><mi>G</mi><mi>e</mi><mi>n</mi><mi>e</mi><mi>r</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>d</mi><mi>B</mi><mi>y</mi><mo stretchy="false">(</mo><mi>i</mi><mi>d</mi><mo stretchy="false">,</mo><mi>e</mi><mo stretchy="false">,</mo><mi>a</mi><mo stretchy="false">,</mo><mi>t</mi><mo stretchy="false">,</mo><mi>a</mi><mi>t</mi><mi>t</mi><mi>r</mi><mi>s</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-398">wasGeneratedBy(id,e,a,t,attrs)</script> where <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-399-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>i</mi><mi>d</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-399">id</script> is an event identifier,
-<span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-400-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-400">e</script> is an entity identifier, <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-401-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-401">a</script> is an activity identifier, <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-402-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mi>t</mi><mi>t</mi><mi>r</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-402">attrs</script> is
-a set of attribute-value pairs, and <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-403-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-403">t</script> is a time.
+<span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-403-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>w</mi><mi>a</mi><mi>s</mi><mi>G</mi><mi>e</mi><mi>n</mi><mi>e</mi><mi>r</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>d</mi><mi>B</mi><mi>y</mi><mo stretchy="false">(</mo><mi>i</mi><mi>d</mi><mo stretchy="false">,</mo><mi>e</mi><mo stretchy="false">,</mo><mi>a</mi><mo stretchy="false">,</mo><mi>t</mi><mo stretchy="false">,</mo><mi>a</mi><mi>t</mi><mi>t</mi><mi>r</mi><mi>s</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-403">wasGeneratedBy(id,e,a,t,attrs)</script> where <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-404-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>i</mi><mi>d</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-404">id</script> is an event identifier,
+<span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-405-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-405">e</script> is an entity identifier, <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-406-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-406">a</script> is an activity identifier, <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-407-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mi>t</mi><mi>t</mi><mi>r</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-407">attrs</script> is
+a set of attribute-value pairs, and <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-408-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-408">t</script> is a time.
 </p>
 <div class="semantics" id="generation-semantics" data-count="20" data-title="Semantics 20 (generation-semantics)"><div class="ruleTitle"><a class="internalDFN" href="#generation-semantics">Semantics 20 (generation-semantics)</a></div>
- <p><span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-404-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>W</mi><mo stretchy="false">,</mo><mi mathvariant="italic">ρ</mi><mo stretchy="false">⊨</mo><mi>w</mi><mi>a</mi><mi>s</mi><mi>G</mi><mi>e</mi><mi>n</mi><mi>e</mi><mi>r</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>d</mi><mi>B</mi><mi>y</mi><mo stretchy="false">(</mo><mi>i</mi><mi>d</mi><mo stretchy="false">,</mo><mi>e</mi><mo stretchy="false">,</mo><mi>a</mi><mo stretchy="false">,</mo><mi>t</mi><mo stretchy="false">,</mo><mi>a</mi><mi>t</mi><mi>t</mi><mi>r</mi><mi>s</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-404">W,\rho \models
+ <p><span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-409-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>W</mi><mo stretchy="false">,</mo><mi mathvariant="italic">ρ</mi><mo stretchy="false">⊨</mo><mi>w</mi><mi>a</mi><mi>s</mi><mi>G</mi><mi>e</mi><mi>n</mi><mi>e</mi><mi>r</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>d</mi><mi>B</mi><mi>y</mi><mo stretchy="false">(</mo><mi>i</mi><mi>d</mi><mo stretchy="false">,</mo><mi>e</mi><mo stretchy="false">,</mo><mi>a</mi><mo stretchy="false">,</mo><mi>t</mi><mo stretchy="false">,</mo><mi>a</mi><mi>t</mi><mi>t</mi><mi>r</mi><mi>s</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-409">W,\rho \models
   wasGeneratedBy(id,e,a,t,attrs)</script>  holds if and only if:
 </p><ol>
-<li>[WF] The identifier <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-405-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>i</mi><mi>d</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-405">id</script> denotes a generation event <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-406-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi><mi>v</mi><mi>t</mi><mo stretchy="false">=</mo><mi mathvariant="italic">ρ</mi><mo stretchy="false">(</mo><mi>i</mi><mi>d</mi><mo stretchy="false">)</mo><mo stretchy="false">∈</mo><mi>G</mi><mi>e</mi><mi>n</mi><mi>e</mi><mi>r</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-406">evt = \rho(id) \in Generations</script>.
-</li>
-<li>[WF] The identifier <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-407-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-407">e</script> denotes an entity <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-408-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi><mi>n</mi><mi>t</mi><mo stretchy="false">=</mo><mi mathvariant="italic">ρ</mi><mo stretchy="false">(</mo><mi>e</mi><mo stretchy="false">)</mo><mo stretchy="false">∈</mo><mi>E</mi><mi>n</mi><mi>t</mi><mi>i</mi><mi>t</mi><mi>i</mi><mi>e</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-408">ent = \rho(e) \in Entities</script>.
+<li>[WF] The identifier <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-410-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>i</mi><mi>d</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-410">id</script> denotes a generation event <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-411-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi><mi>v</mi><mi>t</mi><mo stretchy="false">=</mo><mi mathvariant="italic">ρ</mi><mo stretchy="false">(</mo><mi>i</mi><mi>d</mi><mo stretchy="false">)</mo><mo stretchy="false">∈</mo><mi>G</mi><mi>e</mi><mi>n</mi><mi>e</mi><mi>r</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-411">evt = \rho(id) \in Generations</script>.
 </li>
-<li>[WF] The identifier <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-409-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-409">a</script> denotes an activity <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-410-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mi>c</mi><mi>t</mi><mo stretchy="false">=</mo><mi mathvariant="italic">ρ</mi><mo stretchy="false">(</mo><mi>a</mi><mo stretchy="false">)</mo><mo stretchy="false">∈</mo><mi>A</mi><mi>c</mi><mi>t</mi><mi>i</mi><mi>v</mi><mi>i</mi><mi>t</mi><mi>i</mi><mi>e</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-410">act = \rho(a) \in Activities</script>.
+<li>[WF] The identifier <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-412-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-412">e</script> denotes an entity <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-413-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi><mi>n</mi><mi>t</mi><mo stretchy="false">=</mo><mi mathvariant="italic">ρ</mi><mo stretchy="false">(</mo><mi>e</mi><mo stretchy="false">)</mo><mo stretchy="false">∈</mo><mi>E</mi><mi>n</mi><mi>t</mi><mi>i</mi><mi>t</mi><mi>i</mi><mi>e</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-413">ent = \rho(e) \in Entities</script>.
 </li>
-<li>The event <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-411-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi><mi>v</mi><mi>t</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-411">evt</script> occurred at time <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-412-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="italic">ρ</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo stretchy="false">∈</mo><mi>T</mi><mi>i</mi><mi>m</mi><mi>e</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-412">\rho(t) \in Times</script>, i.e. <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-413-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mi>i</mi><mi>m</mi><mi>e</mi><mo stretchy="false">(</mo><mi>e</mi><mi>v</mi><mi>t</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mi mathvariant="italic">ρ</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-413">time(evt) = \rho(t)</script>.
+<li>[WF] The identifier <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-414-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-414">a</script> denotes an activity <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-415-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mi>c</mi><mi>t</mi><mo stretchy="false">=</mo><mi mathvariant="italic">ρ</mi><mo stretchy="false">(</mo><mi>a</mi><mo stretchy="false">)</mo><mo stretchy="false">∈</mo><mi>A</mi><mi>c</mi><mi>t</mi><mi>i</mi><mi>v</mi><mi>i</mi><mi>t</mi><mi>i</mi><mi>e</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-415">act = \rho(a) \in Activities</script>.
 </li>
-<li>The activity <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-414-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mi>c</mi><mi>t</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-414">act</script> generated <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-415-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi><mi>n</mi><mi>t</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-415">ent</script> via <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-416-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi><mi>v</mi><mi>t</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-416">evt</script>, i.e. <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-417-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mi>e</mi><mi>n</mi><mi>e</mi><mi>r</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>e</mi><mi>v</mi><mi>t</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>e</mi><mi>n</mi><mi>t</mi><mo stretchy="false">,</mo><mi>a</mi><mi>c</mi><mi>t</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-417">generated(evt) = (ent,act)</script>.
+<li>The event <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-416-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi><mi>v</mi><mi>t</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-416">evt</script> occurred at time <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-417-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="italic">ρ</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo stretchy="false">∈</mo><mi>T</mi><mi>i</mi><mi>m</mi><mi>e</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-417">\rho(t) \in Times</script>, i.e. <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-418-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mi>i</mi><mi>m</mi><mi>e</mi><mo stretchy="false">(</mo><mi>e</mi><mi>v</mi><mi>t</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mi mathvariant="italic">ρ</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-418">time(evt) = \rho(t)</script>.
 </li>
-<li>The attribute values match: <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-418-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mi>a</mi><mi>t</mi><mi>c</mi><mi>h</mi><mo stretchy="false">(</mo><mi>W</mi><mo stretchy="false">,</mo><mi>e</mi><mi>v</mi><mi>t</mi><mo stretchy="false">,</mo><mi>a</mi><mi>t</mi><mi>t</mi><mi>r</mi><mi>s</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-418">match(W,evt,attrs)</script>.
+<li>The activity <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-419-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mi>c</mi><mi>t</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-419">act</script> generated <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-420-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi><mi>n</mi><mi>t</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-420">ent</script> via <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-421-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi><mi>v</mi><mi>t</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-421">evt</script>, i.e. <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-422-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mi>e</mi><mi>n</mi><mi>e</mi><mi>r</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>e</mi><mi>v</mi><mi>t</mi><mo stretchy="false">)</mo><mo stretchy="false">=</mo><mo stretchy="false">(</mo><mi>e</mi><mi>n</mi><mi>t</mi><mo stretchy="false">,</mo><mi>a</mi><mi>c</mi><mi>t</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-422">generated(evt) = (ent,act)</script>.
+</li>
+<li>The attribute values match: <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-423-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mi>a</mi><mi>t</mi><mi>c</mi><mi>h</mi><mo stretchy="false">(</mo><mi>W</mi><mo stretchy="false">,</mo><mi>e</mi><mi>v</mi><mi>t</mi><mo stretchy="false">,</mo><mi>a</mi><mi>t</mi><mi>t</mi><mi>r</mi><mi>s</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-423">match(W,evt,attrs)</script>.
 </li>
 </ol>
 </div>
 
 </section>
 <section id="use">
-<h4><span class="secno">4.4.2 </span> Use </h4>
-
-<p>The use formula is of the form <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-419-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>u</mi><mi>s</mi><mi>e</mi><mi>d</mi><mo stretchy="false">(</mo><mi>i</mi><mi>d</mi><mo stretchy="false">,</mo><mi>a</mi><mo stretchy="false">,</mo><mi>e</mi><mo stretchy="false">,</mo><mi>t</mi><mo stretchy="false">,</mo><mi>a</mi><mi>t</mi><mi>t</mi><mi>r</mi><mi>s</mi><mo stretchy="false">)</mo></math></span></span></span><script type="math/tex" id="MathJax-Element-419">used(id,a,e,t,attrs)</script> where <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-420-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>i</mi><mi>d</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-420">id</script>
-denotes an event, <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-421-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-421">a</script> is an activity identifier, <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-422-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-422">e</script> is an object
-identifier, <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-423-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mi>t</mi><mi>t</mi><mi>r</mi><mi>s</mi></math></span></span></span><script type="math/tex" id="MathJax-Element-423">attrs</script> is a set of attribute-value pairs, and <span class="MathJax_Preview"></span><span class="MathJax_MathML" id="MathJax-Element-424-Frame" style="font-size: 100%; "><span class="MathJax_MathContainer" style="position: relative; display: inline-block; white-space: nowrap; "><span style="display: inline-block; "><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><