Fix back aria-described="" attributes.
--- a/master/painting.html Thu Mar 28 10:44:32 2013 +1100
+++ b/master/painting.html Thu Mar 28 11:25:26 2013 +1100
@@ -864,7 +864,7 @@
related to the angle <var>θ</var> between the segments in user space by the
formula:</p>
-<div role="math" aria-describedby="#math-miterlength">
+<div role="math" aria-describedby="math-miterlength">
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
<mrow>
<mfrac>
@@ -1023,7 +1023,7 @@
dash pattern to start the stroke dashing at the beginning of the path. If the
value is negative, then the effect is the same as dash offset <var>d</var>:</p>
-<div role="math" aria-describedby="#math-dashoffset">
+<div role="math" aria-describedby="math-dashoffset">
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
<mrow>
<mi>d</mi>
@@ -1365,7 +1365,7 @@
<p>For a quadratic Bézier:</p>
- <div role="math" aria-describedby="#math-quadratic-start">
+ <div role="math" aria-describedby="math-quadratic-start">
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
<mi>κ<!-- κ --></mi>
<mo stretchy="false">(</mo>
@@ -1431,7 +1431,7 @@
<pre id="math-quadratic-start">$$\kappa(0) = {2\over3}{(P_1-P_0)\times((P_0-P_1)+(P_2-P_1))\over|P_1-P_0|^3}$$</pre>
</div>
- <div role="math" aria-describedby="#math-quadratic-end">
+ <div role="math" aria-describedby="math-quadratic-end">
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
<mi>κ<!-- κ --></mi>
<mo stretchy="false">(</mo>
@@ -1504,7 +1504,7 @@
<p>For a cubic Bézier:</p>
- <div role="math" aria-describedby="#math-cubic-start">
+ <div role="math" aria-describedby="math-cubic-start">
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
<mi>κ<!-- κ --></mi>
<mo stretchy="false">(</mo>
@@ -1570,7 +1570,7 @@
<pre id="math-cubic-start">$$\kappa(0) = {2\over3}{(P_1-P_0)\times((P_0-P_1)+(P_2-P_1))\over|P_1-P_0|^3}$$</pre>
</div>
- <div role="math" aria-describedby="#math-cubic-end">
+ <div role="math" aria-describedby="math-cubic-end">
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
<mi>κ<!-- κ --></mi>
<mo stretchy="false">(</mo>
@@ -3313,7 +3313,7 @@
three sRGB color components, <var>C<sub>linear</sub></var> is the corresponding
linearized RGB color component, and all color values are between 0 and 1:</p>
-<div role="math" aria-describedby="#math-linearRGB">
+<div role="math" aria-describedby="math-linearRGB">
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
<mrow>
<msub>