Stripped JSON-LD API out of JSON-LD Syntax document.
authorManu Sporny <msporny@digitalbazaar.com>
Sat, 15 Oct 2011 19:58:31 -0400
changeset 215 71f9e8333bc7
parent 214 a44b97b077a5
child 216 7bb900de3574
Stripped JSON-LD API out of JSON-LD Syntax document.
spec/latest/json-ld-syntax/index.html
--- a/spec/latest/json-ld-syntax/index.html	Sat Oct 15 19:56:40 2011 -0400
+++ b/spec/latest/json-ld-syntax/index.html	Sat Oct 15 19:58:31 2011 -0400
@@ -1,7 +1,7 @@
 <!DOCTYPE html>
 <html>
 <head>
-<title>JSON-LD 1.0</title>
+<title>JSON-LD Syntax 1.0</title>
 <meta http-equiv="content-type" content="text/html; charset=UTF-8">
 <!--
   === NOTA BENE ===
@@ -145,7 +145,7 @@
           copyrightStart:       "2010",
 
           // the specification's short name, as in http://www.w3.org/TR/short-name/
-          shortName:            "json-ld",
+          shortName:            "json-ld-syntax",
           subtitle:             "A Context-based JSON Serialization for Linking Data",
           // if you wish the publication date to be other than today, set this
           // publishDate:  "2009-08-06",
@@ -158,7 +158,7 @@
           diffTool:             "http://www.aptest.com/standards/htmldiff/htmldiff.pl",
 
           // if there a publicly available Editor's Draft, this is the link
-          edDraftURI:           "http://json-ld.org/spec/latest/",
+          edDraftURI:           "http://json-ld.org/spec/latest/json-ld-syntax/",
 
           // if this is a LCWD, uncomment and set the end of its review period
           // lcEnd: "2009-08-05",
@@ -176,9 +176,7 @@
               { name: "Manu Sporny", url: "http://manu.sporny.org/",
                 company: "Digital Bazaar", companyURL: "http://digitalbazaar.com/" },
               { name: "Gregg Kellogg", url: "http://greggkellogg.net/",
-                company: "Kellogg Associates" },
-              { name: "Dave Longley", url: "http://digitalbazaar.com/",
-                company: "Digital Bazaar", companyURL: "http://digitalbazaar.com/"}
+                company: "Kellogg Associates" }
           ],
 
           // authors, add as many as you like.
@@ -190,8 +188,6 @@
                 company: "Digital Bazaar", companyURL: "http://digitalbazaar.com/" },
               { name: "Gregg Kellogg", url: "http://greggkellogg.net/",
                 company: "Kellogg Associates" },
-              { name: "Dave Longley", url: "http://digitalbazaar.com/",
-                company: "Digital Bazaar", companyURL: "http://digitalbazaar.com/"},
               { name: "Mark Birbeck", url: "http://webbackplane.com/",
                 company: "Backplane Ltd.", companyURL: "http://webbackplane.com/" },
           ],
@@ -213,7 +209,7 @@
           wgPatentURI:  "",
           maxTocLevel: 4,
           preProcess: [ preProc ],
-          alternateFormats: [ {uri: "diff-20110817.html", label: "diff to previous version"} ],
+          //alternateFormats: [ {uri: "diff-20110817.html", label: "diff to previous version"} ],
       };
 
       function updateExample(doc, content) {
@@ -469,8 +465,10 @@
  and support a simplified syntax instead. So, while Zero Edits is a goal,
  it is not always possible without adding great complexity to the language.
  </dd>
- <dt>One-pass Conversion to RDF</dt>
- <dd>JSON-LD supports one-pass conversion to RDF with a very small memory footprint.</dd>
+ <dt>One-pass Processing</dt>
+ <dd>JSON-LD supports one-pass processing, which results in a very small memory 
+ footprint when processing documents. For example, to convert a JSON-LD document
+ into an RDF document of any kind, only one pass is required over the data.</dd>
 </dl>
 </section>
 
@@ -487,7 +485,7 @@
   <li>A <tref>subject</tref> SHOULD be labeled with an <tref>IRI</tref> (an Internationalized Resource Identifier as described in [[!RFC3987]]).</li>
   <li>An <tdef>object</tdef> is a node in a <tref>linked data graph</tref> with at least one incoming edge.</li>
   <li>An <tref>object</tref> MAY be labeled with an <tref>IRI</tref>.</li>
-  <li>An object MAY be a <tdef>subject</tdef> and <tref>object</tref> at the same time.</li>
+  <li>An object MAY be a <tref>subject</tref> and <tref>object</tref> at the same time.</li>
   <li>A <tdef>property</tdef> is an edge of the <tref>linked data graph</tref>.</li>
   <li>A <tref>property</tref> SHOULD be labeled with an <tref>IRI</tref>.</li>
   <li>An <tref>IRI</tref> that is a label in a <tref>linked data graph</tref> SHOULD be dereferencable to a <tref>Linked Data</tref> document describing the labeled <tref>subject</tref>, <tref>object</tref> or <tref>property</tref>.</li>
@@ -569,7 +567,9 @@
 -->
 </pre>
 
-<p>This context document can then be used in an JSON-LD document by adding a single line. The JSON markup as shown in the previous section could be changed as follows to link to the context document:</p>
+<p>This context document can then be used in an JSON-LD document by adding a 
+single line. The JSON markup as shown in the previous section could be changed 
+as follows to link to the context document:</p>
 
 <pre class="example" data-transform="updateExample">
 <!--
@@ -582,7 +582,7 @@
 -->
 </pre>
 
-<p>The addition above transforms the previous JSON document into a JSON document
+<p>The additions above transform the previous JSON document into a JSON document
 with added semantics because the <code>@context</code> specifies how the
 <strong>name</strong>, <strong>homepage</strong>, and <strong>avatar</strong>
 terms map to IRIs.
@@ -1355,6 +1355,66 @@
 </p>
 
 <section>
+  <h2>External Contexts</h2>
+
+  <p>Authors may choose to declare JSON-LD <tref>context</tref>s in external 
+documents to promote re-use of contexts as well as reduce the size of JSON-LD 
+documents.
+In order to use an external context, an author MAY specify an IRI to a valid
+JSON-LD document. If an IRI is specified, the external document MUST be 
+dereferenced and the top-level <code>@context</code> key in the 
+<tref>JSON Object</tref> MUST be overlayed on top of the current 
+active context.</p>
+
+  <p>The following example demonstrates the use of an external context:</p>
+
+<pre class="example" data-transform="updateExample">
+<!--
+{
+  ****"@context": "http://example.org/json-ld-contexts/person"****,
+  "name": "Manu Sporny",
+  "homepage": "http://manu.sporny.org/",
+  "avatar": "http://twitter.com/account/profile_image/manusporny"
+}
+-->
+</pre>
+
+<p>Authors may also import multiple contexts by specifying a list of 
+contexts to import:</p>
+
+<pre class="example" data-transform="updateExample">
+<!--
+{
+  ****"@context": ["http://example.org/json-ld-contexts/person", "http://example.org/json-ld-contexts/event"]****
+  "name": "Manu Sporny",
+  "homepage": "http://manu.sporny.org/",
+  "avatar": "http://twitter.com/account/profile_image/manusporny"
+  ****"celebrates":
+  {
+     "@type": "Event",
+     "description": "International Talk Like a Pirate Day",
+     "date": "R/2011-09-19"
+  }****
+}
+-->
+</pre>
+
+<p>Each context in a list will be evaluated in-order. Duplicate values MUST be
+overwritten on a last-defined-overrides basis. The context list MUST contain
+either de-referenceable IRIs or <tref>JSON Object</tref>s that conform to the
+context syntax as described in this document.</p>
+
+<p>External JSON-LD context documents MAY contain extra information located
+outside of the <code>@context</code> key, such as
+documentation about the <tref>prefix</tref>es declared in the document. It is
+also RECOMMENDED that a human-readable document encoded in HTML+RDFa 
+[[HTML-RDFA]] or other Linked Data compatible format is served as well to
+explain the correct usage of the JSON-LD context document.
+</p>
+
+</section>
+
+<section>
   <h2>Vocabulary Prefixes</h2>
   <p>
     Vocabulary terms in Linked Data documents may draw from a number of
@@ -1705,2302 +1765,6 @@
 
 </section>
 
-<section>
-<h2>The Application Programming Interface</h2>
-
-<p>This API provides a clean mechanism that enables developers to convert
-JSON-LD data into a a variety of output formats that are easier to work with in
-various programming languages. If a JSON-LD API is provided in a programming
-environment, the entirety of the following API MUST be implemented.
-</p>
-
-<section>
-<h3>JsonLdProcessor</h3>
-<dl title="[NoInterfaceObject] interface JsonLdProcessor" class="idl">
-
-  <dt>object expand()</dt>
-  <dd><a href="#expansion">Expands</a> the given <code>input</code>
-    according to the steps in the
-    <a href="#expansion-algorithm">Expansion Algorithm</a>. The
-    <code>input</code> MUST be copied, expanded and returned if there are
-    no errors. If the expansion fails, an appropriate exception MUST be thrown.
-
-    <dl class="parameters">
-     <dt>object input</dt>
-     <dd>The JSON-LD object to copy and perform the expansion upon.</dd>
-     <dt>object optional? context</dt>
-     <dd>An external context to use additionally to the context embedded in <code>input</code> when expanding the <code>input</code>.</dd>
-    </dl>
-
-    <dl class="exception" title="InvalidContext">
-     <dt>INVALID_SYNTAX</dt>
-     <dd>A general syntax error was detected in the <code>@context</code>.
-     For example, if a <code>@coerce</code> key maps to anything other than
-     a string or an array of strings, this exception would be raised.</dd>
-     <dt>MULTIPLE_DATATYPES</dt>
-     <dd>There is more than one target datatype specified for a single
-     property in the list of coercion rules. This means that the processor
-     does not know what the developer intended for the target datatype for a
-     property.</dd>
-    </dl>
-
-  </dd>
-
-  <dt>object compact()</dt>
-  <dd><a href="#compaction">Compacts</a> the given <code>input</code>
-    according to the steps in the
-    <a href="#compaction-algorithm">Compaction Algorithm</a>. The
-    <code>input</code> MUST be copied, compacted and returned if there are
-    no errors. If the compaction fails, an appropirate exception MUST be
-    thrown.
-  <dl class="parameters">
-     <dt>object input</dt>
-     <dd>The JSON-LD object to perform compaction on.</dd>
-     <dt>object optional? context</dt>
-     <dd>The base context to use when compacting the <code>input</code>.</dd>
-  </dl>
-
-    <dl class="exception" title="InvalidContext">
-     <dt>INVALID_SYNTAX</dt>
-     <dd>A general syntax error was detected in the <code>@context</code>.
-     For example, if a <code>@coerce</code> key maps to anything other than
-     a string or an array of strings, this exception would be raised.</dd>
-     <dt>MULTIPLE_DATATYPES</dt>
-     <dd>There is more than one target datatype specified for a single
-     property in the list of coercion rules. This means that the processor
-     does not know what the developer intended for the target datatype for a
-     property.</dd>
-    </dl>
-
-    <dl class="exception" title="ProcessingError">
-     <dt>LOSSY_COMPACTION</dt>
-     <dd>The compaction would lead to a loss of information, such as a
-     <code>@language</code> value.</dd>
-     <dt>CONFLICTING_DATATYPES</dt>
-     <dd>The target datatype specified in the coercion rule and the
-     datatype for the typed literal do not match.</dd>
-    </dl>
-
-  </dd>
-
-  <dt>object frame()</dt>
-  <dd><a href="#framing">Frames</a> the given <code>input</code>
-    using the <code>frame</code> according to the steps in the
-    <a href="#framing-algorithm">Framing Algorithm</a>. The
-    <code>input</code> is used to build the framed output and is returned if
-    there are no errors. If there are no matches for the frame,
-    <code>null</code> MUST be returned. Exceptions MUST be thrown if there are
-    errors.
-  <dl class="parameters">
-     <dt>object input</dt>
-     <dd>The JSON-LD object to perform framing on.</dd>
-     <dt>object frame</dt>
-     <dd>The frame to use when re-arranging the data.</dd>
-     <dt>object options</dt>
-     <dd>A set of options that will affect the framing algorithm.</dd>
-  </dl>
-
-    <dl class="exception" title="InvalidFrame">
-    <dt>INVALID_SYNTAX</dt>
-    <dd>A frame must be either an object or an array of objects, if the frame
-    is neither of these types, this exception is thrown.</dd>
-    <dt>MULTIPLE_EMBEDS</dt>
-    <dd>A subject IRI was specified in more than one place in the input
-    frame. More than one embed of a given subject IRI is not allowed, and if
-    requested, MUST result in this exception.</dd>
-    </dl>
-
-  </dd>
-
-  <dt>object normalize()</dt>
-  <dd><a href="#normalization">Normalizes</a> the given <code>input</code>
-    according to the steps in the
-    <a href="#normalization-algorithm">Normalization Algorithm</a>. The
-    <code>input</code> MUST be copied, normalized and returned if there are
-    no errors. If the compaction fails, <code>null</code> MUST be returned.
-  <dl class="parameters">
-     <dt>object input</dt>
-     <dd>The JSON-LD object to perform normalization upon.</dd>
-     <dt>object optional? context</dt>
-     <dd>An external context to use additionally to the context embedded in <code>input</code> when expanding the <code>input</code>.</dd>
-  </dl>
-
-    <dl class="exception" title="InvalidContext">
-     <dt>INVALID_SYNTAX</dt>
-     <dd>A general syntax error was detected in the <code>@context</code>.
-     For example, if a <code>@coerce</code> key maps to anything other than
-     a string or an array of strings, this exception would be raised.</dd>
-     <dt>MULTIPLE_DATATYPES</dt>
-     <dd>There is more than one target datatype specified for a single
-     property in the list of coercion rules. This means that the processor
-     does not know what the developer intended for the target datatype for a
-     property.</dd>
-    </dl>
-
-  </dd>
-
-  <dt>object triples()</dt>
-  <dd>Processes the <code>input</code> according to the
-    <a href="#rdf-conversion-algorithm">RDF Conversion Algorithm</a>, calling
-    the provided <code>tripleCallback</code> for each triple generated.
-  <dl class="parameters">
-     <dt>object input</dt>
-     <dd>The JSON-LD object to process when outputting triples.</dd>
-     <dt>JsonLdTripleCallback tripleCallback</dt>
-     <dd>A callback that is called whenever a processing error occurs on
-     the given <code>input</code>.
-     <div class="issue">This callback should be aligned with the
-       RDF API.</div></dd>
-     <dt>object optional? context</dt>
-     <dd>An external context to use additionally to the context embedded in <code>input</code> when expanding the <code>input</code>.</dd>
-  </dl>
-
-    <dl class="exception" title="InvalidContext">
-     <dt>INVALID_SYNTAX</dt>
-     <dd>A general syntax error was detected in the <code>@context</code>.
-     For example, if a <code>@coerce</code> key maps to anything other than
-     a string or an array of strings, this exception would be raised.</dd>
-     <dt>MULTIPLE_DATATYPES</dt>
-     <dd>There is more than one target datatype specified for a single
-     property in the list of coercion rules. This means that the processor
-     does not know what the developer intended for the target datatype for a
-     property.</dd>
-    </dl>
-
-  </dd>
-
-</dl>
-
-</section>
-
-<section>
-<h3>JsonLdTripleCallback</h3>
-<p>The JsonLdTripleCallback is called whenever the processor generates a
-triple during the <code>triple()</code> call.</p>
-
-<dl title="[NoInterfaceObject Callback] interface JsonLdTripleCallback"
-    class="idl">
-
-  <dt>void triple()</dt>
-  <dd>This callback is invoked whenever a triple is generated by the processor.
-  <dl class="parameters">
-     <dt>DOMString subject</dt>
-     <dd>The subject IRI that is associated with the triple.</dd>
-     <dt>DOMString property</dt>
-     <dd>The property IRI that is associated with the triple.</dd>
-     <dt>DOMString objectType</dt>
-     <dd>The type of object that is associated with the triple. Valid values
-       are <code>IRI</code> and <code>literal</code>.</dd>
-     <dt>DOMString object</dt>
-     <dd>The object value associated with the subject and the property.</dd>
-     <dt>DOMString? datatype</dt>
-     <dd>The datatype associated with the object.</dd>
-     <dt>DOMString? language</dt>
-     <dd>The language associated with the object in BCP47 format.</dd>
-  </dl>
-  </dd>
-</dl>
-</section>
-
-
-</section>
-
-<section>
-<h1>Algorithms</h1>
-
-<p>All algorithms described in this section are intended to operate on
-language-native data structures. That is, the serialization to a text-based
-JSON document isn't required as input or output to any of these algorithms and
-language-native data structures MUST be used where applicable.</p>
-
-<section>
-  <h2>Syntax Tokens and Keywords</h2>
-
-  <p>JSON-LD specifies a number of syntax tokens and keywords that are using
-  in all algorithms described in this section:</p>
-
-  <dl>
-  <dt><code>@context</code></dt><dd>Used to set the <tref>local context</tref>.</dd>
-  <dt><code>@base</code></dt><dd>Used to set the base IRI for all object IRIs affected  by the <tref>active context</tref>.</dd>
-  <dt><code>@vocab</code></dt><dd>Used to set the base IRI for all property IRIs affected by the <tref>active context</tref>.</dd>
-  <dt><code>@coerce</code></dt><dd>Used to specify type coercion rules.</dd>
-  <dt><code>@literal</code></dt><dd>Used to specify a literal value.</dd>
-  <dt><code>@iri</code></dt><dd>Used to specify an IRI value.</dd>
-  <dt><code>@language</code></dt><dd>Used to specify the language for a literal.</dd>
-  <dt><code>@datatype</code></dt><dd>Used to specify the datatype for a literal.</dd>
-  <dt><code>:</code></dt><dd>The separator for JSON keys and values that use the <tref>prefix</tref> mechanism.</dd>
-  <dt><code>@subject</code></dt><dd>Sets the active subject.</dd>
-  <dt><code>@type</code></dt><dd>Used to set the type of the active subject.</dd>
-  </dl>
-</section>
-
-<section>
-  <h2>Algorithm Terms</h2>
-  <dl>
-    <dt><tdef>initial context</tdef></dt>
-    <dd>
-      a context that is specified to the algorithm before processing begins.
-    </dd>
-    <dt><tdef>active subject</tdef></dt>
-    <dd>
-      the currently active subject that the processor should use when
-      processing.
-    </dd>
-    <dt><tdef>active property</tdef></dt>
-    <dd>
-      the currently active property that the processor should use when
-      processing.
-    </dd>
-    <dt><tdef>active object</tdef></dt>
-    <dd>
-      the currently active object that the processor should use when
-      processing.
-    </dd>
-    <dt><tdef>active context</tdef></dt>
-    <dd>
-      a context that is used to resolve <tref>prefix</tref>es and
-      <tref>term</tref>s while the processing
-      algorithm is running. The <tref>active context</tref> is the context
-      contained within the <tref>processor state</tref>.
-    </dd>
-    <dt><tdef>local context</tdef></dt>
-    <dd>
-      a context that is specified within a <tref>JSON object</tref>,
-      specified via the <code>@context</code> keyword.
-    </dd>
-    <dt><tdef>processor state</tdef></dt>
-    <dd>
-      the <tref>processor state</tref>, which includes the <tref>active
-      context</tref>, <tref>current subject</tref>, and
-      <tref>current property</tref>. The <tref>processor state</tref> is managed
-      as a stack with elements from the previous <tref>processor state</tref>
-      copied into a new <tref>processor state</tref> when entering a new
-      <tref>JSON object</tref>.
-    </dd>
-    <dt><tdef>JSON-LD input</tdef></dt>
-    <dd>
-      The JSON-LD data structure that is provided as input to the algorithm.
-    </dd>
-    <dt><tdef>JSON-LD output</tdef></dt>
-    <dd>
-      The JSON-LD data structure that is produced as output by the algorithm.
-    </dd>
-
-  </dl>
-</section>
-
-<section>
-  <h2 id="context">Context</h2>
-  <p>
-    Processing of JSON-LD data structure is managed recursively.
-    During processing, each rule is applied using information provided by the <tref>active context</tref>.
-    Processing begins by pushing a new <tref>processor state</tref> onto the <tref>processor state</tref> stack and
-    initializing the <tref>active context</tref> with the <tref>initial context</tref>. If a <tref>local context</tref> is encountered,
-    information from the <tref>local context</tref> is merged into the <tref>active context</tref>.
-  </p>
-  <p>
-    The <tref>active context</tref> is used for expanding keys and values of a <tref>JSON object</tref> (or elements
-    of a list (see <span a="#list-processing">List Processing</span>)).
-  </p>
-  <p>
-    A <tref>local context</tref> is identified within a <tref>JSON object</tref> having a key of
-    <code>@context</code> with <tref>string</tref> or a <tref>JSON object</tref> value. When processing a <tref>local
-    context</tref>, special processing rules apply:
-  </p>
-  <ol class="algorithm">
-    <li>Create a new, empty <tref>local context</tref>.</li>
-    <li>
-      If the value is a simple <tref>string</tref>, it MUST have a lexical form of IRI and used to initialize
-      a new JSON document which replaces the value for subsequent processing.
-    </li>
-    <li>If the value is a <tref>JSON object</tref>, perform the following steps:
-      <ol class="algorithm">
-        <li>
-          If the <tref>JSON object</tref> has a <code>@base</code> key, it MUST have a value of a simple
-          <tref>string</tref> with the lexical form of an absolute IRI. Add the base mapping to the <tref>local
-          context</tref>. <p class="issue">Turtle allows @base to be relative. If we did this, we
-          would have to add <a href="#iri-expansion">IRI Expansion</a>.</p>
-        </li>
-        <li>
-          If the <tref>JSON object</tref> has a <code>@vocab</code> key, it MUST have a value of a simple
-          <tref>string</tref> with the lexical form of an absolute IRI. Add the vocabulary mapping to the
-          <tref>local context</tref> after performing <a href="#iri-expansion">IRI Expansion</a> on
-          the associated value.
-        </li>
-        <li>
-          If the <tref>JSON object</tref> has a <code>@coerce</code> key, it MUST have a value of a
-          <tref>JSON object</tref>. Add the <code>@coerce</code> mapping to the <tref>local context</tref>
-          performing <a href="#iri-expansion">IRI Expansion</a> on the associated value(s).
-        </li>
-        <li>
-          Otherwise, the key MUST have the lexical form of <cite><a
-          href="http://www.w3.org/TR/2009/REC-xml-names-20091208/#NT-NCName">NCName</a></cite> and
-          MUST have the value of a simple <tref>string</tref> with the lexical form of IRI. Merge the key-value
-          pair into the <tref>local context</tref>.
-        </li>
-      </ol>
-    </li>
-    <li>
-      Merge the of <tref>local context</tref>'s <code>@coerce</code> mapping into  the
-      <tref>active context</tref>'s <code>@coerce</code> mapping as described <a href="#coerce">below</a>.
-    </li>
-    <li>
-      Merge all entries other than the <code>@coerce</code> mapping from the <tref>local context</tref> to the
-      <tref>active context</tref> overwriting any duplicate values.
-    </li>
-  </ol>
-
-  <section>
-    <h3>Coerce</h3>
-    <p>
-      Map each key-value pair in the <tref>local context</tref>'s
-      <code>@coerce</code> mapping into the <tref>active context</tref>'s
-      <code>@coerce</code> mapping, overwriting any duplicate values in
-      the <tref>active context</tref>'s <code>@coerce</code> mapping.
-      The <code>@coerce</code> mapping has either a single
-      <code>prefix:term</code> value, a single <tref>term</tref> value or an
-      <tref>array</tref> of <code>prefix:term</code> or <tref>term</tref> values.
-      When merging with an existing mapping in the <tref>active context</tref>,
-      map all <tref>prefix</tref> and <tref>term</tref> values to
-      <tref>array</tref> form and replace with the union of the value from
-      the <tref>local context</tref> and the value of the
-      <tref>active context</tref>. If the result is an <tref>array</tref>
-      with a single value, the processor MAY represent this as a string value.
-    </p>
-  </section>
-
-  <section>
-    <h3>Initial Context</h3>
-    <p>The <tref>initial context</tref> is initialized as follows:</p>
-    <ul>
-      <li>
-        <code>@base</code> is set using <cite><href="http://www.ietf.org/rfc/rfc2396.txt">section 5.1 Establishing a
-        Base URI</href="http://www.ietf.org/rfc/rfc2396.txt"></cite> of [[RFC3986]]. Processors MAY provide a means
-        of setting the base IRI programatically.
-      </li>
-      <li><code>@coerce</code> is set with a single mapping from <code>@iri</code> to <code>@type</code>.</li>
-    </ul>
-    <pre class="example" data-transform="updateExample">
-    <!--
-    {
-        "@base": ****document-location****,
-        "@coerce": {
-          "@iri": "@type"
-        }
-    }
-    -->
-    </pre>
-  </section>
-</section>
-
-<section>
-  <h2>IRI Expansion</h2>
-  <p>Keys and some values are evaluated to produce an IRI. This section defines an algorithm for
-    transforming a value representing an IRI into an actual IRI.</p>
-  <p>IRIs may be represented as an absolute IRI, a <tref>term</tref>, a <tref>prefix</tref>:<tref>term</tref> construct, or as a value relative to <code>@base</code>
-    or <code>@vocab</code>.</p>
-  <p>The algorithm for generating an IRI is:
-    <ol class="algorithm">
-      <li>Split the value into a <em>prefix</em> and <em>suffix</em> from the first occurrence of ':'.</li>
-      <li>If the prefix is a '_' (underscore), the IRI is unchanged.</li>
-      <li>If the <tref>active context</tref> contains a mapping for <em>prefix</em>, generate an IRI
-        by prepending the mapped prefix to the (possibly empty) suffix using textual concatenation. Note that an empty
-        suffix and no suffix (meaning the value contains no ':' string at all) are treated equivalently.</li>
-      <li>If the IRI being processed is for a property (i.e., a key's value in a <tref>JSON object</tref>, or a
-        value in a <code>@coerce</code> mapping) and the active context has a <code>@vocab</code> mapping,
-        join the mapped value to the suffix using textual concatenation.</li>
-      <li>If the IRI being processed is for a subject or object (i.e., not a property) and the active context has a <code>@base</code> mapping,
-        join the mapped value to the suffix using the method described in [[!RFC3986]].</li>
-      <li>Otherwise, use the value directly as an IRI.</li>
-    </ol>
-  </p>
-</section>
-
-<section>
-  <h2>IRI Compaction</h2>
-  <p>Some keys and values are expressed using IRIs. This section defines an
-    algorithm for transforming an IRI to a compact IRI using the
-    <tref>term</tref>s and <tref>prefix</tref>es specified in the
-    <tref>local context</tref>.</p>
-
-  <p>The algorithm for generating a compacted IRI is:
-    <ol class="algorithm">
-      <li>Search every key-value pair in the <tref>active context</tref> for
-        a <tref>term</tref> that is a complete match
-        against the IRI. If a complete match is found, the resulting compacted
-        IRI is the <tref>term</tref> associated with the IRI in the
-        <tref>active context</tref>.</li>
-      <li>If a complete match is not found, search for a partial match from
-        the beginning of the IRI. For all matches that are found, the resulting
-        compacted IRI is the <tref>prefix</tref> associated with the partially
-        matched IRI in the <tref>active context</tref> concatenated with a
-        colon (:) character and the unmatched part of the string. If there is
-        more than one compacted IRI produced, the final value is the
-        shortest and lexicographically least value of the entire set of compacted IRIs.</li>
-    </ol>
-  </p>
-</section>
-
-<section>
-  <h2>Value Expansion</h2>
-  <p>Some values in JSON-LD can be expressed in a compact form. These values
-    are required to be expanded at times when processing JSON-LD documents.
-  </p>
-
-  <p>The algorithm for expanding a value is:
-    <ol class="algorithm">
-      <li>If the key that is associated with the value has an associated
-        coercion entry in the <tref>local context</tref>, the resulting
-        expansion is an object populated according to the following steps:
-        <ol class="algorithm">
-          <li>If the coercion target is <code>@iri</code>, expand the value
-            by adding a new key-value pair where the key is <code>@iri</code>
-            and the value is the expanded IRI according to the
-            <a href="#iri-expansion">IRI Expansion</a> rules.</li>
-          <li>If the coercion target is a typed literal, expand the value
-            by adding two new key-value pairs. The first key-value pair
-            will be <code>@literal</code> and the unexpanded value. The second
-            key-value pair will be <code>@datatype</code> and the associated
-            coercion datatype expanded according to the
-            <a href="#iri-expansion">IRI Expansion</a> rules.</li>
-        </ol>
-      </li>
-    </ol>
-  </p>
-</section>
-
-<section>
-  <h2>Value Compaction</h2>
-  <p>Some values, such as IRIs and typed literals, may be expressed in an
-    expanded form in JSON-LD. These values are required to be compacted at
-    times when processing JSON-LD documents.
-  </p>
-
-  <p>The algorithm for compacting a value is:
-    <ol class="algorithm">
-      <li>If the <tref>local context</tref> contains a coercion target for the
-        key that is associated with the value, compact the value using the
-        following steps:
-        <ol class="algorithm">
-          <li>If the coercion target is an <code>@iri</code>, the compacted
-            value is the value associated with the <code>@iri</code> key,
-            processed according to the
-            <a href="#iri-compaction">IRI Compaction</a> steps.</li>
-          <li>If the coercion target is a typed literal, the compacted
-            value is the value associated with the <code>@literal</code> key.
-          </li>
-          <li>Otherwise, the value is not modified.</li>
-        </ol>
-      </li>
-    </ol>
-  </p>
-</section>
-
-<section>
-<h2>Expansion</h2>
-
-<p class="issue">This algorithm is a work in progress, do not implement it.</p>
-
-<p>As stated previously, expansion is the process of taking a JSON-LD
-input and expanding all IRIs and typed literals to their fully-expanded form.
-The output will not contain a single context declaration and will have all IRIs
-and typed literals fully expanded.
-</p>
-
-<section>
-<h3>Expansion Algorithm</h3>
-
-<ol class="algorithm">
-  <li>If the top-level item in the <tref>JSON-LD input</tref> is an <tref>array</tref>,
-  process each item in the <tref>array</tref> recursively using this algorithm.</li>
-  <li>If the top-level item in the <tref>JSON-LD input</tref> is an object,
-  update the <tref>local context</tref> according to the steps outlined in
-  the <a href="#context">context</a> section. Process each key, expanding
-  the key according to the <a href="#iri-expansion">IRI Expansion</a> rules.</li>
-  <ol class="algorithm">
-    <li>Process each value associated with each key:
-      <ol class="algorithm">
-        <li>If the value is an <tref>array</tref>, process each item in the <tref>array</tref>
-        recursively using this algorithm.</li>
-        <li>If the value is an object, process the object recursively
-        using this algorithm.</li>
-        <li>Otherwise, check to see the associated key has an associated
-        coercion rule. If the value should be coerced, expand the value
-        according to the <a href="#value-expansion">Value Expansion</a> rules.
-        If the value does not need to be coerced, leave the value as-is.
-        </li>
-      </ol>
-    <li>Remove the context from the object.</li>
-  </ol>
-</ol>
-</section>
-
-</section>
-
-<section>
-<h2>Compaction</h2>
-
-<p class="issue">This algorithm is a work in progress, do not implement it.</p>
-
-<p>As stated previously, compaction is the process of taking a JSON-LD
-input and compacting all IRIs using a given context. The output
-will contain a single top-level context declaration and will only use
-<tref>term</tref>s and <tref>prefix</tref>es and will ensure that all
-typed literals are fully compacted.
-</p>
-
-<section>
-<h3>Compaction Algorithm</h3>
-
-<ol class="algorithm">
-  <li>Perform the <a href="#expansion-algorithm">Expansion Algorithm</a> on
-  the <tref>JSON-LD input</tref>. This removes any existing context to allow the given context to be cleanly applied.</li>
-  <li>Set the <tref>active context</tref> to the given context.
-  <li>If the top-level item is an <tref>array</tref>, process each item in the <tref>array</tref>
-    recursively, starting at this step.
-  <li>If the top-level item is an object, compress each key using the steps
-    defined in <a href="#iri-compaction">IRI Compaction</a> and compress each
-    value using the steps defined in
-    <a href="#value-compaction">Value Compaction</a>.</li>
-  </li>
-</ol>
-</section>
-
-</section>
-
-
-<section>
-<h2>Framing</h2>
-
-<p class="issue">This algorithm is a work in progress, do not implement it.</p>
-
-<p>A JSON-LD document is a representation of a directed graph. A single
-directed graph can have many different serializations, each expressing
-exactly the same information. Developers typically don't work directly with
-graphs, but rather, prefer trees when dealing with JSON. While mapping a graph
-to a tree can be done, the layout of the end result must be specified in
-advance. This section defines an algorithm for mapping a graph to
-a tree given a <tref>frame</tref>.
-</p>
-
-<section>
-<h3>Framing Algorithm Terms</h3>
- <dl>
-   <dt><tdef>input frame</tdef></dt>
-   <dd>
-     the initial <tref>frame</tref> provided to the framing algorithm.
-   </dd>
-   <dt><tdef>framing context</tdef></dt>
-   <dd>
-     a context containing the <tref>object embed flag</tref>, the
-     <tref>explicit inclusion flag</tref> and the
-     <tref>omit default flag</tref>.
-   </dd>
-   <dt><tdef>object embed flag</tdef></dt>
-   <dd>
-     a flag specifying that objects should be directly embedded in the output,
-     instead of being referred to by their IRI.
-   </dd>
-   <dt><tdef>explicit inclusion flag</tdef></dt>
-   <dd>
-     a flag specifying that for properties to be included in the output, they
-     must be explicitly declared in the <tref>framing context</tref>.
-   </dd>
-   <dt><tdef>omit missing properties flag</tdef></dt>
-   <dd>
-     a flag specifying that properties that are missing from the
-     <tref>JSON-LD input</tref> should be omitted from the output.
-   </dd>
-   <dt><tdef>match limit</tdef></dt>
-   <dd>
-     A value specifying the maximum number of matches to accept when building
-     arrays of values during the framing algorithm. A value of -1 specifies
-     that there is no match limit.
-   </dd>
-   <dt><tdef>map of embedded subjects</tdef></dt>
-   <dd>
-     A map that tracks if a subject has been embedded in the output of the
-     <a href="#framing-algorithm">Framing Algorithm</a>.
-   </dd>
- </dl>
-</section>
-
-<section>
-<h3>Framing Algorithm</h3>
-
-<p>The framing algorithm takes <tref>JSON-LD input</tref> that has been
-normalized according to the
-<a href="#normalization-algorithm">Normalization Algorithm</a>
-(<strong>normalized input</strong>), an
-<tref>input frame</tref> that has been expanded according to the
-<a href="#expansion-algorithm">Expansion Algorithm</a>
-(<strong>expanded frame</strong>), and a number of options and produces
-<tref>JSON-LD output</tref>. The following series of steps is the recursive
-portion of the framing algorithm:
-</p>
-
-<ol class="algorithm">
-  <li>Initialize the <tref>framing context</tref> by setting the
-   <tref>object embed flag</tref>, clearing the
-   <tref>explicit inclusion flag</tref>, and clearing the
-   <tref>omit missing properties flag</tref>. Override these values
-   based on input options provided to the algorithm by the application.
-  </li>
-  <li>Generate a <tdef>list of frames</tdef> by processing the
-    <strong>expanded frame</strong>:
-    <ol class="algorithm">
-      <li>If the <strong>expanded frame</strong> is not an <tref>array</tref>, set
-        <tref>match limit</tref> to 1, place the
-        <strong>expanded frame</strong> into the <tref>list of frames</tref>,
-        and set the <tref>JSON-LD output</tref> to <code>null</code>.</li>
-      <li>If the <strong>expanded frame</strong> is an empty <tref>array</tref>, place an
-        empty object into the <tref>list of frames</tref>,
-        set the <tref>JSON-LD output</tref> to an <tref>array</tref>, and set
-        <tref>match limit</tref> to -1.</li>
-      <li>If the <strong>expanded frame</strong> is a non-empty <tref>array</tref>, add
-        each item in the <strong>expanded frame</strong> into the
-        <tref>list of frames</tref>, set the <tref>JSON-LD output</tref> to an
-        <tref>array</tref>, and set <tref>match limit</tref> to -1.</li>
-    </ol></li>
-  <li>Create a <tdef>match array</tdef> for each <strong>expanded frame</strong>
-    in the <tref>list of frames</tref> halting when either the
-    <tref>match limit</tref> is zero or the end of the
-    <tref>list of frames</tref> is reached. If an
-    <strong>expanded frame</strong> is
-    not an object, the processor MUST throw a <code>Invalid Frame Format</code>
-    exception. Add each matching item from the <strong>normalized input</strong>
-    to the <tref>matches array</tref> and decrement the
-    <tref>match limit</tref> by 1 if:
-    <ol class="algorithm">
-       <li>The <strong>expanded frame</strong> has an <code>rdf:type</code>
-         that exists in the item's list of <code>rdf:type</code>s. Note:
-         the <code>rdf:type</code> can be an <tref>array</tref>, but only one value needs
-         to be in common between the item and the
-         <strong>expanded frame</strong> for a match.</li>
-       <li>The <strong>expanded frame</strong> does not have an
-         <code>rdf:type</code> property, but every property in the
-         <strong>expanded frame</strong> exists in the item.</li>
-    </ol></li>
-  <li>Process each item in the <tref>match array</tref> with its associated
-    <tdef>match frame</tdef>:
-    <ol class="algorithm">
-      <li>If the <tref>match frame</tref> contains an <code>@embed</code>
-        keyword, set the <tref>object embed flag</tref> to its value.
-        If the <tref>match frame</tref> contains an <code>@explicit</code>
-        keyword, set the <tref>explicit inclusion flag</tref> to its value.
-        Note: if the keyword exists, but the value is neither
-        <code>true</code> or <code>false</code>, set the associated flag to
-        <code>true</code>.</li>
-      <li>If the <tref>object embed flag</tref> is cleared and the item has
-        the <code>@subject</code> property, replace the item with the value
-        of the <code>@subject</code> property.</li>
-      <li>If the <tref>object embed flag</tref> is set and the item has
-        the <code>@subject</code> property, and its IRI is in the
-        <tref>map of embedded subjects</tref>, throw a
-        <code>Duplicate Embed</code> exception.</li>
-      <li>If the <tref>object embed flag</tref> is set and the item has
-        the <code>@subject</code> property and its IRI is not in the
-        <tref>map of embedded subjects</tref>:
-        <ol class="algorithm">
-          <li>If the <tref>explicit inclusion flag</tref> is set,
-            then delete any key from the item that does not exist in the
-            <tref>match frame</tref>, except <code>@subject</code>.</li>
-          <li>For each key in the <tref>match frame</tref>, except for
-            keywords and <code>rdf:type</code>:
-          <ol class="algorithm">
-            <li>If the key is in the item, then build a new
-              <tdef>recursion input list</tdef> using the object or objects
-              associated with the key. If any object contains an
-              <code>@iri</code> value that exists in the
-              <tref>normalized input</tref>, replace the object in the
-              <tref>recusion input list</tref> with a new object containing
-              the <code>@subject</code> key where the value is the value of
-              the <code>@iri</code>, and all of the other key-value pairs for
-              that subject. Set the <tdef>recursion match frame</tdef> to the
-              value associated with the <tref>match frame</tref>'s key. Replace
-              the value associated with the key by recursively calling this
-              algorithm using <tref>recursion input list</tref>,
-              <tref>recursion match frame</tref> as input.</li>
-            <li>If the key is not in the item, add the key to the item and
-              set the associated value to an empty array if the
-              <tref>match frame</tref> key's value is an array
-              or <code>null</code> otherwise.</li>
-            <li>If value associated with the item's key is <code>null</code>,
-              process the <tref>omit missing properties flag</tref>:
-              <ol class="algorithm">
-                <li>If the value associated with the key in the
-                  <tref>match frame</tref> is an array, use the first frame
-                  from the array as the <tdef>property frame</tdef>, otherwise
-                  set the <tref>property frame</tref> to an empty object.</li>
-                <li>If the <tref>property frame</tref> contains an
-                <code>@omitDefault</code> keyword, set the
-                <tref>omit missing properties flag</tref> to its value.
-                Note: if the keyword exists, but the value is neither
-                <code>true</code> or <code>false</code>, set the associated
-                flag to <code>true</code>.</li>
-                <li>If the <tref>omit missing properties flag</tref> is set,
-                  delete the key in the item. Otherwise, if the
-                  <code>@default</code> keyword is set in the
-                  <tref>property frame</tref> set the item's value to the value
-                  of <code>@default</code>.</li>
-              </ol></li>
-          </ol></li>
-        </ol>
-      <li>If the <tref>JSON-LD output</tref> is <code>null</code> set it to
-        the item, otherwise, append the item to the
-        <tref>JSON-LD output</tref>.
-    </ol>
-  <li>Return the <tref>JSON-LD output</tref>.</li>
-</ol>
-
-The final, non-recursive step of the framing algorithm requires the
-<tref>JSON-LD output</tref> to be compacted according to the
-<a href="#compaction-algorithm">Compaction Algorithm</a> by using the
-context provided in the <tref>input frame</tref>. The resulting value is the
-final output of the compaction algorithm and is what should be returned to the
-application.
-
-</section>
-
-</section>
-
-<section>
-<h2>Normalization</h2>
-
-<p class="issue">This algorithm is a work in progress, do not implement it.</p>
-
-<p>Normalization is the process of taking <tref>JSON-LD input</tref> and
-performing a deterministic transformation on that input that results in all
-aspects of the graph being fully expanded and named in the
-<tref>JSON-LD output</tref>. The normalized output is generated in such a way
-that any conforming JSON-LD processor will generate identical output
-given the same input. The problem is a fairly difficult technical
-problem to solve because it requires a directed graph to be ordered into a
-set of nodes and edges in a deterministic way. This is easy to do when all of
-the nodes have unique names, but very difficult to do when some of the nodes
-are not labeled.
-</p>
-
-<p>In time, there may be more than one normalization algorithm that will need
-to be identified. For identification purposes, this algorithm is named
-"Universal Graph Normalization Algorithm 2011"
-(<abbr title="Universal Graph Normalization Algorithm 2011">UGNA2011</abbr>).
-</p>
-
-<section>
-<h3>Normalization Algorithm Terms</h3>
- <dl>
-   <dt><tdef>label</tdef></dt>
-   <dd>
-     The subject IRI associated with a graph node. The subject IRI is expressed
-     using a key-value pair in a <tref>JSON object</tref> where the key is
-     <code>@subject</code> and the value is a string that is an IRI or
-     a <tref>JSON object</tref> containing the key <code>@iri</code> and
-     a value that is a string that is an IRI.
-   </dd>
-   <dt><tdef>list of expanded nodes</tdef></dt>
-   <dd>
-     A list of all nodes in the <tref>JSON-LD input</tref> graph containing no
-     embedded objects and having all keys and values expanded according to the
-     steps in the <a href="#expansion-algorithm">Expansion Algorithm</a>.
-   </dd>
-   <dt><tdef>alpha</tdef> and <tdef>beta</tdef> values</dt>
-   <dd>
-     The words <tref>alpha</tref> and <tref>beta</tref> refer to the first and
-     second nodes or values being examined in an algorithm. The names are
-     merely used to refer to each input value to a comparison algorithm.
-   </dd>
-   <dt><tdef>renaming counter</tdef></dt>
-   <dd>
-     A counter that is used during the
-     <a href="#node-relabeling-algorithm">Node Relabeling Algorithm</a>. The
-     counter typically starts at one (1) and counts up for every node that is
-     relabeled. There will be two such renaming counters in an implementation
-     of the normalization algorithm. The first is the
-     <tref>labeling counter</tref> and the second is the
-     <tref>deterministic labeling counter</tref>.
-   </dd>
-   <dt><tdef>serialization label</tdef></dt>
-   <dd>
-     An identifier that is created to aid in the normalization process in the
-     <a href="#deep-comparison-algorithm">Deep Comparison Algorithm</a>. The
-     value typically takes the form of <code>s&lt;NUMBER&gt;</code> or
-     <code>c&lt;NUMBER&gt;</code>.
-   </dd>
-</dl>
-</section>
-
-<section>
-<h3>Normalization State</h3>
-
-<p>When performing the steps required by the normalization algorithm,
-it is helpful to track the many pieces of information in a
-data structure called the <tdef>normalization state</tdef>. Many of these
-pieces simply provide indexes into the graph. The information
-contained in the <tref>normalization state</tref> is described below.</p>
-
-<dl>
-   <dt><tdef>node state</tdef></dt>
-   <dd>
-     Each node in the graph will be assigned a <tref>node state</tref>. This
-     state contains the information necessary to deterministically
-     <tref>label</tref> all nodes in the graph. A <tref>node state</tref>
-     includes:
-     <dl>
-        <dt><tdef>node reference</tdef></dt>
-        <dd>
-          A <tref>node reference</tref> is a reference to a node in the graph.
-          For a given <tref>node state</tref>, its <tref>node reference</tref>
-          refers to the node that the state is for. When a
-          <tref>node state</tref> is created, its <tref>node reference</tref>
-          should be to the node it is created for.
-        </dd>
-        <dt><tdef>outgoing list</tdef></dt>
-        <dd>
-          Lists the <tref>label</tref>s for all nodes that are properties of
-          the <tref>node reference</tref>. This list should be initialized
-          by iterating over every object associated with a property in the
-          <tref>node reference</tref> adding its label if it is another node.
-        </dd>
-        <dt><tdef>incoming list</tdef></dt>
-        <dd>
-          Lists the <tref>label</tref>s for all nodes in the graph for which
-          the <tref>node reference</tref> is a property. This list is
-          initialized to an empty list.
-        </dd>
-        <dt><tdef>outgoing serialization map</tdef></dt>
-        <dd>
-          Maps node <tref>label</tref>s to <tref>serialization label</tref>s.
-          This map is initialized to an empty map. When this map is populated,
-          it will be filled with keys that are the <tref>label</tref>s of every node in the
-          graph with a label that begins with <code>_:</code> and that has a
-          path, via properties, that starts with the
-          <tref>node reference</tref>.
-        </dd>
-        <dt><tdef>outgoing serialization</tdef></dt>
-        <dd>
-          A string that can be lexicographically compared to the
-          <tref>outgoing serialization</tref>s of other
-          <tref>node state</tref>s. It is a representation of the
-          <tref>outgoing serialization map</tref> and other related
-          information. This string is initialized to an empty string.
-        </dd>
-        <dt><tdef>incoming serialization map</tdef></dt>
-        <dd>
-          Maps node <tref>label</tref>s to <tref>serialization label</tref>s.
-          This map is initialized to an empty map. When this map is populated,
-          it will be filled with keys that are the <tref>label</tref>s of every
-          node in the graph with a <tref>label</tref> that begins with
-          <code>_:</code> and that has a path, via properties, that ends with
-          the <tref>node reference</tref>.
-        </dd>
-        <dt><tdef>incoming serialization</tdef></dt>
-        <dd>
-          A string that can be lexicographically compared to the
-          <tref>outgoing serialization</tref>s of other
-          <tref>node state</tref>s. It is a representation of the
-          <tref>incoming serialization map</tref> and other related
-          information. This string is initialized to an empty string.
-        </dd>
-     </dl>
-   </dd>
-   <dt><tdef>node state map</tdef></dt>
-   <dd>
-     A mapping from a node's <tref>label</tref> to a <tref>node state</tref>.
-     It is initialized to an empty map.
-   </dd>
-   <dt><tdef>labeling prefix</tdef></dt>
-   <dd>
-     The labeling prefix is a string that is used as the beginning of a node
-     <tref>label</tref>. It should be initialized to a random base string that
-     starts with the characters <code>_:</code>, is not used by any other
-     node's <tref>label</tref> in the <tref>JSON-LD input</tref>, and does not
-     start with the characters <code>_:c14n</code>. The prefix has two uses.
-     First it is used to temporarily name nodes during the normalization
-     algorithm in a way that doesn't collide with the names that already
-     exist as well as the names that will be generated by the normalization
-     algorithm. Second, it will eventually be set to <code>_:c14n</code> to
-     generate the final, deterministic labels for nodes in the graph. This
-     prefix will be concatenated with the <tref>labeling counter</tref> to
-     produce a node <tref>label</tref>. For example, <code>_:j8r3k</code> is
-     a proper initial value for the <tref>labeling prefix</tref>.
-   </dd>
-   <dt><tdef>labeling counter</tdef></dt>
-   <dd>
-     A counter that is used to label nodes. It is appended to the
-     <tref>labeling prefix</tref> to create a node <tref>label</tref>. It is
-     initialized to <code>1</code>.
-   </dd>
-   <dt><tdef>map of flattened nodes</tdef></dt>
-   <dd>
-     A map containing a representation of all nodes in the graph where the
-     key is a node <tref>label</tref> and the value is a single
-     <tref>JSON object</tref> that has no nested sub-objects
-     and has had all properties for the same node merged into a single
-     <tref>JSON object</tref>.
-   </dd>
-</dl>
-
-</section>
-
-<section>
-<h3>Normalization Algorithm</h3>
-
-<p>The normalization algorithm expands the <tref>JSON-LD input</tref>,
-flattens the data structure, and creates an initial set of names for all
-nodes in the graph. The flattened data structure is then processed by a
-node labeling algorithm in order to get a fully expanded and named list of
-nodes which is then sorted. The result is a deterministically named and
-ordered list of graph nodes.
-</p>
-
-<ol class="algorithm">
-<li>Expand the <tref>JSON-LD input</tref> according to the steps in
-the <a href="#expansion-algorithm">Expansion Algorithm</a> and store the
-result as the <strong>expanded input</strong>.</li>
-<li>Create a <tref>normalization state</tref>.</li>
-<li>Initialize the <tref>map of flattened nodes</tref> by recursively
-processing every <tdef>expanded node</tdef> in the
-<strong>expanded input</strong> in depth-first order:
-  <ol class="algorithm">
-    <li>If the <tref>expanded node</tref> is an unlabeled node, add a
-      new key-value pair to the <tref>expanded node</tref>
-      where the key is <code>@subject</code> and the value is the
-      concatenation of the <tref>labeling prefix</tref>
-      and the string value of the <tref>labeling counter</tref>.
-      Increment the <tref>labeling counter</tref>.</li>
-    <li>Add the <tref>expanded node</tref> to the
-      <tref>map of flattened nodes</tref>:
-      <ol class="algorithm">
-        <li>If the <tref>expanded node</tref>'s <tref>label</tref> is already
-          in the
-          <tref>map of flattened nodes</tref> merge all properties from the
-          entry in the <tref>map of flattened nodes</tref> into the
-          <tref>expanded node</tref>.</li>
-        <li>Go through every property associated with an array in the
-          <tref>expanded node</tref> and remove any duplicate IRI entries from
-          the array. If the resulting array only has one IRI entry, change it
-          from an array to an object.</li>
-        <li>Set the entry for the <tref>expanded node</tref>'s <tref>label</tref>
-          in the <tref>map of flattened nodes</tref> to the
-          <tref>expanded node</tref>.
-        </li></ol></li>
-    <li>After exiting the recursive step, replace the reference to the
-      <tref>expanded node</tref> with an object containing a single
-       key-value pair where the key is <code>@iri</code> and the value is
-       the value of the <code>@subject</code> key in the node.</li>
-  </ol></li>
-<li>For every entry in the <tref>map of flattened nodes</tref>, insert a
-  key-value pair into the <tref>node state map</tref> where the key is the
-  key from the <tref>map of flattened nodes</tref> and the value is a
-  <tref>node state</tref> where its <tref>node reference</tref> refers to
-  the value from the <tref>map of flattened nodes</tref>.
-<li>Populate the <tref>incoming list</tref> for each <tref>node state</tref>
-  by iterating over every node in the graph and adding its <tref>label</tref>
-  to the <tref>incoming list</tref> associated with each node found in its
-  properties.</li>
-<li>For every entry in the <tref>node state map</tref> that has a
-<tref>label</tref> that begins with <code>_:c14n</code>, relabel the node
-using the <a href="#node-relabeling-algorithm">Node Relabeling Algorithm</a>.
-<li>Label all of the nodes that contain a <code>@subject</code> key associated
-with a value starting with <code>_:</code> according to the steps in the
-<a href="#deterministic-labeling-algorithm">Deterministic Labeling Algorithm</a>.
-</li>
-</ol>
-</section>
-
-<section>
-<h4>Node Relabeling Algorithm</h4>
-
-<p>This algorithm renames a node by generating a unique
-<tdef>new label</tdef> and updating all references to that <tref>label</tref>
-in the <tref>node state map</tref>. The <tdef>old label</tdef> and the
-<tref>normalization state</tref> must be given as an input to the
-algorithm. The <tref>old label</tref> is the current <tref>label</tref> of
-the node that is to be relabeled.
-
-<p>The node relabeling algorithm is as follows:</p>
-
-<ol class="algorithm">
-  <li>If the <tref>labeling prefix</tref> is <code>_:c14n</code> and the
-    <tref>old label</tref> begins with <code>_:c14n</code> then return as
-    the node has already been renamed.
-  </li>
-  <li>Generate the <tdef>new label</tdef> by concatenating the
-    <tref>labeling prefix</tref> with the string value of the
-    <tref>labeling counter</tref>. Increment the <tref>labeling counter</tref>.
-  </li>
-  <li>For the <tref>node state</tref> associated with the
-  <tref>old label</tref>, update every node in the <tref>incoming list</tref>
-  by changing all the properties that reference the <tref>old label</tref> to
-  the <tref>new label</tref>.
-  </li>
-  <li>Change the <tref>old label</tref> key in the <tref>node state map</tref>
-    to the <tref>new label</tref> and set the associated
-    <tref>node reference</tref>'s <tref>label</tref> to the
-    <tref>new label</tref>.
-  </li>
-</ol>
-</section>
-
-<section>
-<h4>Deterministic Labeling Algorithm</h4>
-
-<p>The deterministic labeling algorithm takes the
-<tref>normalization state</tref>
-and produces a <tdef>list of finished nodes</tdef> that is sorted and
-contains deterministically named and expanded nodes from the graph.
-
-<ol class="algorithm">
-  <li>Set the <tref>labeling prefix</tref> to <code>_:c14n</code>, the
-    <tref>labeling counter</tref> to <code>1</code>,
-    the <tdef>list of finished nodes</tdef> to an empty array, and create
-    an empty array, the <tdef>list of unfinished nodes</tdef>.</li>
-  <li>For each <tref>node reference</tref> in the <tref>node state map</tref>:
-    <ol class="algorithm">
-      <li>If the node's <tref>label</tref> does not start with <code>_:</code>
-        then put the <tref>node reference</tref> in the
-        <tref>list of finished nodes</tref>.
-      </li>
-      <li>If the node's <tref>label</tref> does start with <code>_:</code>
-        then put the <tref>node reference</tref> in the
-        <tref>list of unfinished nodes</tref>.
-      </li>
-    </ol>
-  </li>
-  <li>Append to the <tref>list of finished nodes</tref> by processing
-    the remainder of the <tref>list of unfinished nodes</tref> until it is
-    empty:
-    <ol class="algorithm">
-      <li>Sort the <tref>list of unfinished nodes</tref> in descending order
-        according to the
-        <a href="#deep-comparison-algorithm">Deep Comparison Algorithm</a> to
-        determine the sort order.</li>
-      <li>Create a <tdef>list of labels</tdef> and initialize it to an
-        empty array.</li>
-      <li>For the first node from the <tref>list of unfinished nodes</tref>:
-        <ol class="algorithm">
-          <li>Add its <tref>label</tref> to the <tref>list of labels</tref>.
-          </li>
-          <li>For each key-value pair from its associated
-            <tref>outgoing serialization map</tref>, add the key to a list and
-            then sort the list according to the lexicographical order of the
-            keys' associated values. Append the list to the
-            <tref>list of nodes to label</tref>.
-          </li>
-          <li>For each key-value pair from its associated
-            <tref>incoming serialization map</tref>, add the key to a list and
-            then sort the list according to the lexicographical order of the
-            keys' associated values. Append the list to the
-            <tref>list of nodes to label</tref>.
-          </li></ol></li>
-      <li>For each <tref>label</tref> in the <tref>list of labels</tref>,
-        relabel the associated node according to the
-        <a href="#node-relabeling-algorithm">Node Relabeling Algorithm</a>. If
-        any <tref>outgoing serialization map</tref> contains a key that
-        matches the <tref>label</tref>, clear the map and set the associated
-        <tref>outgoing serialization</tref> to an empty string. If any
-        <tref>incoming serialization map</tref> contains a key that
-        matches the <tref>label</tref>, clear the map and set the associated
-        <tref>incoming serialization</tref> to an empty string.
-      </li>
-      <li>
-        Remove each node with a <tref>label</tref> that starts with
-        <code>_:c14n</code> from the <tref>list of unfinished nodes</tref> and
-        add it to the <tref>list of finished nodes</tref>.
-      </li>
-    </ol>
-  </li>
-  <li>Sort the <tref>list of finished nodes</tref> in descending order
-    according to the
-    <a href="#deep-comparison-algorithm">Deep Comparison Algorithm</a> to
-    determine the sort order.</li>
-</ol>
-</section>
-
-<section>
-<h4>Shallow Comparison Algorithm</h4>
-
-<p>
-The shallow comparison algorithm takes two unlabeled nodes,
-<tref>alpha</tref> and <tref>beta</tref>, as input and
-determines which one should come first in a sorted list. The following
-algorithm determines the steps that are executed in order to determine the
-node that should come first in a list:
-</p>
-
-<ol class="algorithm">
-  <li>Compare the total number of node properties. The node with fewer
-    properties is first.</li>
-  <li>Lexicographically sort the property IRIs for each node and compare
-    the sorted lists. If an IRI is found to be lexicographically smaller, the
-    node containing that IRI is first.</li>
-  <li>Compare the values of each property against one another:
-    <ol class="algorithm">
-      <li>The node associated with fewer property values is first.
-      </li>
-      <li>Create an <tdef>alpha list</tdef> by adding all values associated
-        with the <tref>alpha</tref> property that are not unlabeled nodes.
-      </li>
-      <li>Create a <tdef>beta list</tdef> by adding all values associated
-        with the <tref>beta</tref> property that is not an unlabeled node.
-      </li>
-      <li>Compare the length of <tref>alpha list</tref> and
-        <tref>beta list</tref>. The node associated with the list containing
-        the fewer number of items is first.</li>
-      <li>Sort <tref>alpha list</tref> and <tref>beta list</tref> according to
-        the
-        <a href="#object-comparison-algorithm">Object Comparison Algorithm</a>.
-        For each offset into the <tref>alpha list</tref>, compare the item
-        at the offset against the item at the same offset in the
-        <tref>beta list</tref> according to the
-        <a href="#object-comparison-algorithm">Object Comparison Algorithm</a>.
-        The node associated with the lesser item is first.
-    </ol></li>
-  <li>Process the <tref>incoming list</tref>s associated with each node to
-    determine order:
-    <ol class="algorithm">
-      <li>The node with the shortest <tref>incoming list</tref> is first.</li>
-      <li>Sort the <tref>incoming list</tref>s according to incoming property
-         and then incoming <tref>label</tref>.
-      <li>The node associated with the fewest number of incoming nodes is
-        first.</li>
-      <li>For each offset into the <tref>incoming list</tref>s,
-        compare the associated properties and <tref>label</tref>s:
-        <ol class="algorithm">
-          <li>The node associated with a <tref>label</tref> that does not begin with
-            <code>_:</code> is first.
-          </li>
-          <li>If the nodes' <tref>label</tref>s do not begin with
-            <code>_:</code>, then the node associated with the
-            lexicographically lesser <tref>label</tref> is first.</li>
-          </li>
-          <li>The node associated with the lexicographically lesser associated
-            property is first.
-          </li>
-          <li>The node with the <tref>label</tref> that does not begin with
-            <code>_:c14n</code> is first.
-          </li>
-          <li>The node with the lexicographically lesser <tref>label</tref>
-            is first.
-          </li>
-        </ol>
-    </ol></li>
-  <li>Otherwise, the nodes are equivalent.</li>
-</section>
-
-<section>
-<h4>Object Comparison Algorithm</h4>
-
-<p>
-The object comparison algorithm is designed to compare two graph node
-property values, <tref>alpha</tref> and <tref>beta</tref>, against the other.
-The algorithm is useful when sorting two lists of graph node properties.
-</p>
-
-<ol class="algorithm">
-  <li>If one of the values is a <tref>string</tref> and the other is not, the value that is
-    a string is first.
-  </li>
-  <li>If both values are <tref>string</tref>s, the lexicographically lesser string is
-    first.
-  </li>
-  <li>If one of the values is a literal and the other is not, the value that is
-    a literal is first.
-  </li>
-  <li>If both values are literals:
-    <ol class="algorithm">
-      <li>The lexicographically lesser string associated with
-        <code>@literal</code> is first.
-      </li>
-      <li>The lexicographically lesser string associated with
-        <code>@datatype</code> is first.
-      </li>
-      <li>The lexicographically lesser string associated with
-        <code>@language</code> is first.
-      </li>
-    </ol>
-  </li>
-  <li>If both values are expanded IRIs, the
-    lexicographically lesser string associated with <code>@iri</code>
-    is first.</li>
-  <li>Otherwise, the two values are equivalent.</li>
-</ol>
-
-</section>
-
-<section>
-<h4>Deep Comparison Algorithm</h4>
-
-<p>
-The deep comparison algorithm is used to compare the difference between two
-nodes, <tref>alpha</tref> and <tref>beta</tref>.
-A deep comparison takes the incoming and outgoing node edges in
-a graph into account if the number of properties and value of those properties
-are identical. The algorithm is helpful when sorting a list of nodes and will
-return whichever node should be placed first in a list if the two nodes are
-not truly equivalent.
-</p>
-
-<p>When performing the steps required by the deep comparison algorithm, it
-is helpful to track state information about mappings. The information
-contained in a <tref>mapping state</tref> is described below.</p>
-
-<dl class="algorithm">
-   <dt><tdef>mapping state</tdef></dt>
-   <dd>
-     <dl>
-        <dt><tdef>mapping counter</tdef></dt>
-        <dd>
-          Keeps track of the number of nodes that have been mapped to
-          <tref>serialization labels</tref>. It is initialized to
-          <code>1</code>.
-        </dd>
-        <dt><tdef>processed labels map</tdef></dt>
-        <dd>
-          Keeps track of the <tref>label</tref>s of nodes that have already
-          been assigned <tref>serialization label</tref>s. It is initialized
-          to an empty map.
-        </dd>
-        <dt><tdef>serialized labels map</tdef></dt>
-        <dd>
-          Maps a node <tref>label</tref> to its associated
-          <tref>serialization label</tref>. It is initialized to an empty map.
-        </dd>
-        <dt><tdef>adjacent info map</tdef></dt>
-        <dd>
-          Maps a <tref>serialization label</tref> to the node
-          <tref>label</tref> associated with it, the list of sorted
-          <tref>serialization label</tref>s for adjacent nodes, and the map of
-          adjacent node <tref>serialiation label</tref>s to their associated
-          node <tref>label</tref>s. It is initialized to an empty map.
-        </dd>
-        <dt><tdef>key stack</tdef></dt>
-        <dd>
-          A stack where each element contains an array of adjacent
-          <tref>serialization label</tref>s and an index into that array. It
-          is initialized to a stack containing a single element where its
-          array contains a single string element <code>s1</code> and its
-          index is set to <code>0</code>.
-        </dd>
-        <dt><tdef>serialized keys</tdef></dt>
-        <dd>
-          Keeps track of which <tref>serialization label</tref>s have already
-          been written at least once to the <tref>serialization string</tref>.
-          It is initialized to an empty map.
-        </dd>
-        <dt><tdef>serialization string</tdef></dt>
-        <dd>
-          A string that is incrementally updated as a serialization is built.
-          It is initialized to an empty string.
-        </dd>
-     </dl>
-   </dd>
-</dl>
-
-<p>The deep comparison algorithm is as follows:</p>
-
-<ol class="algorithm">
-  <li>Perform a comparison between <tref>alpha</tref> and <tref>beta</tref>
-    according to the
-    <a href="#shallow-comparison-algorithm">Shallow Comparison Algorithm</a>.
-    If the result does not show that the two nodes are equivalent, return
-    the result.
-    </li>
-  <li>Compare incoming and outgoing edges for each node, updating their
-    associated <tref>node state</tref> as each node is processed:
-    <ol class="algorithm">
-      <li>If the <tref>outgoing serialization map</tref> for <tref>alpha</tref>
-        is empty, generate the serialization according to the
-        <a href="#node-serialization-algorithm">Node Serialization Algorithm</a>.
-        Provide <tref>alpha</tref>'s <tref>node state</tref>, a new
-        <tref>mapping state</tref>,
-        <code>outgoing direction</code> to the algorithm as inputs.
-      <li>If the <tref>outgoing serialization map</tref> for <tref>beta</tref>
-        is empty, generate the serialization according to the
-        <a href="#node-serialization-algorithm">Node Serialization Algorithm</a>.
-        Provide <tref>beta</tref>'s <tref>node state</tref>, a new
-        <tref>mapping state</tref>, and
-        <code>outgoing direction</code> to the algorithm as inputs.
-      <li>If <tref>alpha</tref>'s <tref>outgoing serialization</tref> is
-        lexicographically less than <tref>beta</tref>'s, then
-        <tref>alpha</tref> is first. If it is greater, then <tref>beta</tref>
-        is first.</li>
-      <li>If the <tref>incoming serialization map</tref> for <tref>alpha</tref>
-        is empty, generate the serialization according to the
-        <a href="#node-serialization-algorithm">Node Serialization Algorithm</a>.
-        Provide <tref>alpha</tref>'s <tref>node state</tref>, a new
-        <tref>mapping state</tref> with its <tref>serialized labels map</tref>
-        set to a copy of <tref>alpha</tref>'s
-        <tref>outgoing serialization map</tref>, and
-        <code>incoming direction</code> to the algorithm as inputs.
-      <li>If the <tref>incoming serialization map</tref> for <tref>beta</tref>
-        is empty, generate the serialization according to the
-        <a href="#node-serialization-algorithm">Node Serialization Algorithm</a>.
-        Provide <tref>beta</tref>'s <tref>node state</tref>, a new
-        <tref>mapping state</tref> with its <tref>serialized labels map</tref>
-        set to a copy of <tref>beta</tref>'s
-        <tref>outgoing serialization map</tref>, and
-        <code>incoming direction</code> to the algorithm as inputs.
-      <li>If <tref>alpha</tref>'s <tref>incoming serialization</tref> is
-        lexicographically less than <tref>beta</tref>'s, then
-        <tref>alpha</tref> is first. If it is greater, then <tref>beta</tref>
-        is first.</li>
-    </ol></li>
-</ol>
-</section>
-
-<section>
-<h4>Node Serialization Algorithm</h4>
-
-<p>
-The node serialization algorithm takes a <tref>node state</tref>, a
-<tref>mapping state</tref>, and a <tdef>direction</tdef> (either
-<code>outgoing direction</code> or <code>incoming direction</code>) as
-inputs and generates a deterministic serialization for the
-<tref>node reference</tref>.
-</p>
-
-<ol class="algorithm">
-<li>If the <tref>label</tref> exists in the
-  <tref>processed labels map</tref>, terminate the algorithm as the
-  <tref>serialization label</tref> has already been created.
-</li>
-<li>Set the value associated with the <tref>label</tref> in the
-  <tref>processed labels map</tref> to <code>true</code>.
-</li>
-<li>Generate the next <tdef>serialization label</tdef> for the
-  <tref>label</tref> according to the
-  <a href="#serialization-label-generation-algorithm">Serialization Label Generation Algorithm</a>.
-</li>
-<li>Create an empty map called the <tdef>adjacent serialized labels map</tdef>
-that will store mappings from <tref>serialized label</tref>s to adjacent
-node <tref>label</tref>s.</li>
-<li>Create an empty array called the
-<tdef>adjacent unserialized labels list</tdef> that will store
-<tref>label</tref>s of adjacent nodes that haven't been assigned
-<tref>serialization label</tref>s yet.
-</li>
-<li>For every <tref>label</tref> in a list, where the list the <tref>outgoing list</tref> if
-the <tref>direction</tref> is <code>outgoing direction</code> and the
-<tref>incoming list</tref> otherwise, if the <tref>label</tref> starts with
-<code>_:</code>, it is the <tdef>target node label</tdef>:
-  <ol class="algorithm">
-    <li>Look up the <tref>target node label</tref> in the
-      <tref>processed labels map</tref> and if a mapping exists,
-      update the <tref>adjacent serialized labels map</tref> where the key is
-      the value in the <tref>serialization map</tref> and the value is the
-      <tref>target node label</tref>.</li>
-    <li>Otherwise, add the <tref>target node label</tref> to the
-      <tref>adjacent unserialized labels list</tref>.
-  </ol>
-</li>
-<li>Set the <tdef>maximum serialization combinations</tdef> to
-  <code>1</code> or the length of the
-  <tref>adjacent unserialized labels list</tref>, whichever is greater.</li>
-<li>While the <tref>maximum serialization combinations</tref> is greater than
-  <code>0</code>, perform the
-  <a href="#combinatorial-serialization-algorithm">Combinatorial Serialization Algorithm</a>
-  passing the <tref>node state</tref>, the <tref>mapping state</tref> for the
-  first iteration and a copy of it for each subsequent iteration, the
-  generated <tref>serialization label</tref>, the <tref>direction</tref>,
-  the <tref>adjacent serialized labels map</tref>, and the
-  <tref>adjacent unserialized labels list</tref>.
-  Decrement the <tref>maximum serialization combinations</tref> by
-  <code>1</code> for each iteration.
-</ol>
-
-</section>
-
-<section>
-<h4>Serialization Label Generation Algorithm</h4>
-
-<p>
-The algorithm generates a <tref>serialization label</tref> given a
-<tref>label</tref> and a <tref>mapping state</tref> and returns the
-<tref>serialization label</tref>.
-</p>
-
- <ol class="algorithm">
-   <li>If the <tref>label</tref> is already in the
-     <tref>serialization labels map</tref>, return its associated value.
-   </li>
-   <li>If the <tref>label</tref> starts with the string <code>_:c14n</code>,
-     the <tref>serialization label</tref> is the letter <code>c</code>
-     followed by the number that follows <code>_:c14n</code> in the
-     <tref>label</tref>.
-   </li>
-   <li>Otherwise, the <tref>serialization label</tref> is the
-     letter <code>s</code> followed by the string value of
-     <tref>mapping count</tref>. Increment the <tref>mapping count</tref> by
-     <code>1</code>.
-   </li>
-   <li>Create a new key-value pair in the <tref>serialization labels map</tref>
-     where the key is the <tref>label</tref> and the value is the
-     generated <tref>serialization label</tref>.
-   </li>
- </ol>
-</section>
-
-<section>
-<h4>Combinatorial Serialization Algorithm</h4>
-
-<p>
-The combinatorial serialization algorithm takes a <tref>node state</tref>, a
-<tref>mapping state</tref>, a <tref>serialization label</tref>, a
-<tref>direction</tref>, a <tref>adjacent serialized labels map</tref>,
-and a <tref>adjacent unserialized labels list</tref> as inputs and generates
-the lexicographically least serialization of nodes relating to the
-<tref>node reference</tref>.
-</p>
-
-<ol class="algorithm">
-  <li>If the <tref>adjacent unserialized labels list</tref> is not empty:
-    <ol class="algorithm">
-      <li>Copy the <tref>adjacent serialized labels map</tref> to the
-        <tdef>adjacent serialized labels map copy</tdef>.</li>
-      <li>Remove the first <tref>unserialized label</tref> from the
-        <tref>adjacent unserialized labels list</tref> and create a new
-        <tdef>new serialization label</tdef> according to the
-        <a href="#serialization-label-generation-algorithm">Serialization Label Generation Algorithm</a>.
-      <li>Create a new key-value mapping in the
-        <tref>adjacent serialized labels map copy</tref>
-        where the key is the <tref>new serialization label</tref> and the value
-        is the <tref>unserialized label</tref>.
-      <li>Set the <tdef>maximum serialization rotations</tdef> to
-        <code>1</code> or the length of the
-        <tref>adjacent unserialized labels list</tref>, whichever is greater.
-      </li>
-      <li>While the <tref>maximum serialization rotations</tref> is greater than
-        <code>0</code>:
-        <ol class="algorithm">
-          <li>Recursively perform the
-            <a href="#combinatorial-serialization-algorithm">Combinatorial Serialization Algorithm</a>
-            passing the <tref>mapping state</tref> for the first iteration of the
-            loop, and a copy of it for each subsequent iteration.
-          </li>
-          <li>Rotate the elements in the
-            <tref>adjacent unserialized labels list</tref> by shifting each of
-            them once to the right, moving the element at the end of the list
-            to the beginning of the list.
-          </li>
-          <li>Decrement the <tref>maximum serialization rotations</tref> by
-            <code>1</code> for each iteration.
-          </li>
-        </ol>
-      </li>
-    </ol>
-  </li>
-  <li>If the <tref>adjacent unserialized labels list</tref> is empty:
-    <ol class="algorithm">
-      <li>Create a <tdef>list of keys</tdef> from the keys in the
-        <tref>adjacent serialized labels map</tref> and sort it
-        lexicographically.
-      </li>
-      <li>Add a key-value pair to the <tref>adjacent info map</tref> where
-        the key is the <tref>serialization label</tref> and the value is
-        an object containing the <tref>node reference</tref>'s label, the
-        <tref>list of keys</tref> and the
-        <tref>adjacent serialized labels map</tref>.
-      </li>
-      <li>Update the <tref>serialization string</tref> according to the
-        <a href="#mapping-serialization-algorithm">Mapping Serialization Algorithm</a>.
-      </li>
-      <li>If the <tref>direction</tref> is <code>outgoing direction</code>
-        then <tdef>directed serialization</tdef> refers to the
-        <tref>outgoing serialization</tref> and the
-        <tdef>directed serialization map</tdef> refers to the
-        <tref>outgoing serialization map</tref>, otherwise it refers to the
-        <tref>incoming serialization</tref> and the
-        <tref>directed serialization map</tref> refers to the
-        <tref>incoming serialization map</tref>. Compare the
-        <tref>serialization string</tref> to the
-        <tref>directed serialization</tref> according to the
-        <a href="#mapping-serialization-algorithm">Serialization Comparison Algorithm</a>.
-        If the <tref>serialization string</tref> is less than or equal to
-        the <tref>directed serialization</tref>:
-        <ol class="algorithm">
-          <li>For each value in the <tref>list of keys</tref>, run the
-            <a href="#node-serialization-algorithm">Node Serialization Algorithm</a>.
-          </li>
-	       <li>Update the <tref>serialization string</tref> according to the
-	         <a href="#mapping-serialization-algorithm">Mapping Serialization Algorithm</a>.
-	       </li>
-	       <li>Compare the <tref>serialization string</tref> to the
-	         <tref>directed serialization</tref> again and if it is less than
-	         or equal and the length of the <tref>serialization string</tref> is
-	         greater than or equal to the length of the
-	         <tref>directed serialization</tref>, then set the
-	         <tref>directed serialization</tref> to the
-	         <tref>serialization string</tref> and set the
-	         <tref>directed serialization map</tref> to the
-	         <tref>serialized labels map</tref>.
-	       </li>
-        </ol>
-      </li>
-    </ol>
-  </li>
-</ol>
-
-</section>
-
-<section>
-<h4>Serialization Comparison Algorithm</h4>
-
-<p>
-The serialization comparison algorithm takes two serializations,
-<tref>alpha</tref> and <tref>beta</tref> and returns either which of the two
-is less than the other or that they are equal.
-</p>
-
-<ol class="algorithm">
-  <li>Whichever serialization is an empty string is greater. If they are
-    both empty strings, they are equal.</li>
-  <li>Return the result of a lexicographical comparison of <tref>alpha</tref>
-    and <tref>beta</tref> up to the number of characters in the shortest of
-    the two serializations.
-  </li>
-</ol>
-</section>
-
-<section>
-<h4>Mapping Serialization Algorithm</h4>
-
-<p>
-The mapping serialization algorithm incrementally updates the
-<tref>serialization string</tref> in a <tref>mapping state</tref>.
-</p>
-
-<ol class="algorithm">
-  <li>If the <tref>key stack</tref> is not empty:
-    <ol class="algorithm">
-      <li>Pop the <tdef>serialization key info</tdef> off of the
-        <tref>key stack</tref>.
-      </li>
-      <li>For each <tdef>serialization key</tdef> in the
-        <tref>serialization key info</tref> array, starting at
-        the <tdef>serialization key index</tdef> from the
-        <tref>serialization key info</tref>:
-        <ol class="algorithm">
-          <li>If the <tref>serialization key</tref> is not in the
-            <tref>adjacent info map</tref>, push the
-            <tref>serialization key info</tref> onto the
-            <tref>key stack</tref> and exit from this loop.
-          </li>
-          <li>If the <tref>serialization key</tref> is a key in
-            <tref>serialized keys</tref>, a cycle has been detected. Append
-            the concatenation of the <code>_</code> character and the
-            <tref>serialization key</tref> to the
-            <tref>serialization string</tref>.
-          <li>Otherwise, serialize all outgoing and incoming edges in the
-            related node by performing the following steps:
-            <ol class="algorithm">
-              <li>Mark the <tref>serialization key</tref> as having
-                been processed by adding a new key-value pair to
-                <tref>serialized keys</tref> where the key
-                is the <tref>serialization key</tref> and the value is
-                <code>true</code>.
-              </li>
-              <li>Set the <tdef>serialization fragment</tdef> to the value of
-                the <tref>serialization key</tref>.</li>
-              <li>Set the <tref>adjacent info</tref> to the value of the
-                <tref>serialization key</tref> in the
-                <tref>adjacent info map</tref>.
-              </li>
-              <li>Set the <tref>adjacent node label</tref> to the node
-                <tref>label</tref> from the <tref>adjacent info</tref>.
-              </li>
-              <li>If a mapping for the <tref>adjacent node label</tref>
-                exists in the <tref>map of all labels</tref>:
-                <ol class="algorithm">
-                  <li>Append the result of the
-                    <a href="">Label Serialization Algorithm</a> to the
-                    <tref>serialization fragment</tref>.
-                  </li>
-                </ol>
-              </li>
-              <li>Append all of the keys in the <tref>adjacent info</tref>
-                to the <tref>serialization fragment</tref>.
-              </li>
-              <li>Append the <tref>serialization fragment</tref> to the
-                <tref>serialization string</tref>.
-              </li>
-              <li>Push a new key info object containing the keys from the
-                <tref>adjacent info</tref> and an index of <code>0</code>
-                onto the <tref>key stack</tref>.
-              </li>
-              <li>Recursively update the <tref>serialization string</tref>
-                according to the
-                <a href="#mapping-serialization-algorithm">Mapping Serialization Algorithm</a>.
-              </li>
-            </ol>
-          </li>
-        </ol>
-      </li>
-    </ol>
-  </li>
-</ol>
-
-</section>
-
-<section>
-<h4>Label Serialization Algorithm</h4>
-
-<p>
-The label serialization algorithm serializes information about a node that
-has been assigned a particular <tref>serialization label</tref>.
-</p>
-
-<ol class="algorithm">
-  <li>Initialize the <tref>label serialization</tref> to an empty string.</li>
-  <li>Append the <code>[</code> character to the
-    <tref>label serialization</tref>.</li>
-  <li>Append all properties to the <tref>label serialization</tref> by
-    processing each key-value pair in the <tref>node reference</tref>,
-    excluding the
-    <code>@subject</code> property. The keys should be processed in
-    lexicographical order and their associated values should be processed
-    in the order produced by the
-    <a href="#object-comparison-algorithm">Object Comparison Algorithm</a>:
-    <ol class="algorithm">
-      <li>Build a string using the pattern <code>&lt;</code><strong>KEY</strong><code>&gt;</code>
-        where <strong>KEY</strong> is the current key. Append string to the
-        <tref>label serialization</tref>.</li>
-      <li>The value may be a single object or an array of objects.
-        Process all of the objects that are associated with the key, building
-        an <tdef>object string</tdef> for each item:
-        <ol class="algorithm">
-          <li>If the object contains an <code>@iri</code> key with a
-            value that starts
-            with <code>_:</code>, set the <tref>object string</tref> to
-            the value <code>_:</code>. If the value does not
-            start with <code>_:</code>, build the <tref>object string</tref>
-            using the pattern
-            <code>&lt;</code><strong>IRI</strong><code>&gt;</code>
-            where <strong>IRI</strong> is the value associated with the
-            <code>@iri</code> key.</li>
-          <li>If the object contains a <code>@literal</code> key and a
-            <code>@datatype</code> key, build the <tref>object string</tref>
-            using the pattern
-            <code>"</code><strong>LITERAL</strong><code>"^^&lt;</code><strong>DATATYPE</strong><code>&gt;</code>
-            where <strong>LITERAL</strong> is the value associated with the
-            <code>@literal</code> key and <strong>DATATYPE</strong> is the
-            value associated with the <code>@datatype</code> key.</li>
-          <li>If the object contains a <code>@literal</code> key and a
-            <code>@language</code> key, build the <tref>object string</tref>
-            using the pattern
-            <code>"</code><strong>LITERAL</strong><code>"@</code><strong>LANGUAGE</strong>
-            where <strong>LITERAL</strong> is the value associated with the
-            <code>@literal</code> key and <strong>LANGUAGE</strong> is the
-            value associated with the <code>@language</code> key.</li>
-          <li>Otherwise, the value is a string. Build the
-            <tref>object string</tref> using the pattern
-            <code>"</code><strong>LITERAL</strong><code>"</code>
-            where <strong>LITERAL</strong> is the value associated with the
-            current key.</li>
-          <li>If this is the second iteration of the loop,
-            append a <code>|</code> separator character to the
-            <tref>label serialization</tref>.</li>
-          <li>Append the <tref>object string</tref> to the
-            <tref>label serialization</tref>.</li>
-        </ol>
-    </ol>
-  </li>
-  <li>Append the <code>]</code> character to the
-    <tref>label serialization</tref>.</li>
-  <li>Append the <code>[</code> character to the
-    <tref>label serialization</tref>.</li>
-  <li>Append all incoming references for the current
-    <tref>label</tref> to the <tref>label serialization</tref> by
-    processing all of the items associated with the <tref>incoming list</tref>:
-    <ol class="algorithm">
-      <li>Build a <tdef>reference string</tdef>
-        using the pattern <code>&lt;</code><strong>PROPERTY</strong><code>&gt;</code><code>&lt;</code><strong>REFERER</strong><code>&gt;</code>
-        where <strong>PROPERTY</strong> is the property associated with the
-        incoming reference and <strong>REFERER</strong> is either the subject of
-        the node referring to the <tref>label</tref> in the incoming reference
-        or <code>_:</code> if <strong>REFERER</strong> begins with
-        <code>_:</code>.
-      <li>If this is the second iteration of the loop,
-        append a <code>|</code> separator character to the
-        <tref>label serialization</tref>.</li>
-      <li>Append the <tref>reference string</tref> to the
-        <tref>label serialization</tref>.</li>
-    </ol>
-  <li>Append the <code>]</code> character to the
-    <tref>label serialization</tref>.</li>
-  <li>Append all <tref>adjacent node labels</tref> to the
-    <tref>label serialization</tref> by concatenating the string value
-    for all of them, one after the other, to the
-    <tref>label serialization</tref>.</li>
-  <li>Push the <tref>adjacent node labels</tref> onto the
-    <tref>key stack</tref> and append the result of the
-    <a href="#mapping-serialization-algorithm">Mapping Serialization Algorithm</a>
-    to the <tref>label serialization</tref>.
-</ol>
-
-</section>
-
-</section>
-
-<section>
-
-<h3>Data Round Tripping</h3>
-
-<p>When normalizing <strong>xsd:double</strong> values, implementers MUST
-ensure that the normalized value is a string. In order to generate the
-string from a <strong>double</strong> value, output equivalent to the
-<code>printf("%1.6e", value)</code> function in C MUST be used where
-<strong>"%1.6e"</strong> is the string formatter and <strong>value</strong>
-is the value to be converted.</p>
-
-<p>To convert the a double value in JavaScript, implementers can use the
-following snippet of code:</p>
-
-<pre class="example" data-transform="updateExample">
-<!--
-// the variable 'value' below is the JavaScript native double value that is to be converted
-(value).toExponential(6).replace(/(e(?:\+|-))([0-9])$/, '$10$2')
--->
-</pre>
-
-<p class="note">When data needs to be normalized, JSON-LD authors should
-not use values that are going to undergo automatic conversion. This is due
-to the lossy nature of <strong>xsd:double</strong> values.</p>
-
-<p class="note">Some JSON serializers, such as PHP's native implementation,
-backslash-escapes the forward slash character. For example, the value
-<code>http://example.com/</code> would be serialized as
-<code>http:\/\/example.com\/</code> in some
-versions of PHP. This is problematic when generating a byte
-stream for processes such as normalization. There is no need to
-backslash-escape forward-slashes in JSON-LD. To aid interoperability between
-JSON-LD processors, a JSON-LD serializer MUST NOT backslash-escape
-forward slashes.</p>
-
-<p class="issue">Round-tripping data can be problematic if we mix and
-match @coerce rules with JSON-native datatypes, like integers. Consider the
-following code example:</p>
-
-<pre class="example" data-transform="updateExample">
-<!--
-var myObj = { "@context" : {
-                "number" : "http://example.com/vocab#number",
-                "@coerce": {
-                   "xsd:nonNegativeInteger": "number"
-                }
-              },
-              "number" : 42 };
-
-// Map the language-native object to JSON-LD
-var jsonldText = jsonld.normalize(myObj);
-
-// Convert the normalized object back to a JavaScript object
-var myObj2 = jsonld.parse(jsonldText);
--->
-</pre>
-
-<p class="issue">At this point, myObj2 and myObj will have different
-values for the "number" value. myObj will be the number 42, while
-myObj2 will be the string "42". This type of data round-tripping
-error can bite developers. We are currently wondering if having a
-"coerce validation" phase in the parsing/normalization phases would be a
-good idea. It would prevent data round-tripping issues like the
-one mentioned above.</p>
-
-</section>
-
-<section>
-<h2>RDF Conversion</h2>
-
-<p>A JSON-LD document MAY be converted to any other RDF-compatible document
-format using the algorithm specified in this section.</p>
-
-<p>
-  The JSON-LD Processing Model describes processing rules for extracting RDF
-  from a JSON-LD document. Note that many uses of JSON-LD may not require
-  generation of RDF.
-</p>
-
-<p>
-The processing algorithm described in this section is provided in
-order to demonstrate how one might implement a JSON-LD to RDF processor.
-Conformant implementations are only required to produce the same type and
-number of triples during the output process and are not required to
-implement the algorithm exactly as described.
-</p>
-
-<p class="issue">The RDF Conversion Algorithm is a work in progress.</p>
-
-<section class="informative">
-  <h4>Overview</h4>
-  <p>
-    JSON-LD is intended to have an easy to parse grammar that closely models existing
-    practice in using JSON for describing object representations. This allows the use
-    of existing libraries for parsing JSON.
-  </p>
-  <p>
-    As with other grammars used for describing <tref>Linked Data</tref>, a key concept is that of
-    a <em>resource</em>. Resources may be of three basic types: <em>IRI</em>s, for describing
-    externally named entities, <em>BNodes</em>, resources for which an external name does not
-    exist, or is not known, and Literals, which describe terminal entities such as strings,
-    dates and other representations having a lexical representation possibly including
-    an explicit language or datatype.
-  </p>
-  <p>
-    Data described with JSON-LD may be considered to be the representation of a graph made
-    up of <tref>subject</tref> and <tref>object</tref> resources related via a <tref>property</tref> resource.
-    However, specific implementations may choose to operate on the document as a normal
-    JSON description of objects having attributes.
-  </p>
-</section>
-
-<section>
-  <h4>RDF Conversion Algorithm Terms</h4>
-  <dl>
-    <dt><tdef>default graph</tdef></dt>
-    <dd>
-      the destination graph for all triples generated by JSON-LD markup.
-    </dd>
-  </dl>
-</section>
-
-<section>
-  <h3>RDF Conversion Algorithm</h3>
-  <p>
-    The algorithm below is designed for in-memory implementations with random access to <tref>JSON object</tref> elements.
-  </p>
-  <p>
-    A conforming JSON-LD processor implementing RDF conversion MUST implement a
-    processing algorithm that results in the same <tref>default graph</tref> that the following
-    algorithm generates:
-  </p>
-
-  <ol class="algorithm">
-    <li id="processing-step-default-context">
-      Create a new <tref>processor state</tref> with with the <tref>active context</tref> set to the
-      <tref>initial context</tref> and <tref>active subject</tref> and <tref>active property</tref>
-      initialized to NULL.
-    </li>
-
-    <li id="processing-step-associative">
-      If a <tref>JSON object</tref> is detected, perform the following steps:
-      <ol class="algorithm">
-        <li>
-          If the <tref>JSON object</tref> has a <code>@context</code> key, process the local context as
-          described in <a href="#context">Context</a>.
-        </li>
-        <li>
-          Create a new <tref>JSON object</tref> by mapping the keys from the current <tref>JSON object</tref> using the
-          <tref>active context</tref> to new keys using the associated value from the current <tref>JSON object</tref>.
-          Repeat the mapping until no entry is found within the <tref>active context</tref> for the key. Use the new
-          <tref>JSON object</tref> in subsequent steps.
-        </li>
-        <li>
-          If the <tref>JSON object</tref> has an <code>@iri</code> key, set the <tref>active object</tref> by
-          performing <a href="#iri-expansion">IRI Expansion</a> on the associated value. Generate a
-          triple representing the <tref>active subject</tref>, the <tref>active property</tref> and the
-          <tref>active object</tref>. Return the <tref>active object</tref> to the calling location.
-          <p class="issue"><code>@iri</code> really just behaves the same as <code>@subject</code>, consider consolidating them.</p>
-        </li>
-        <li>
-          If the <tref>JSON object</tref> has a <code>@literal</code> key, set the <tref>active object</tref>
-          to a literal value as follows:
-          <ol class="algorithm">
-            <li>
-              as a <tref>typed literal</tref> if the <tref>JSON object</tref> contains a <code>@datatype</code> key
-              after performing <a href="#iri-expansion">IRI Expansion</a> on the specified<code>@datatype</code>.
-            </li>
-            <li>
-              otherwise, as a <tref>plain literal</tref>. If the <tref>JSON object</tref> contains
-              a <code>@language</code> key, use it's value to set the language of the plain literal.
-            </li>
-            <li>
-              Generate a triple representing the <tref>active subject</tref>, the <tref>active property</tref> and the
-              <tref>active object</tref>. Return the <tref>active object</tref> to the calling location.
-            </li>
-          </ol>
-        </li>
-        <li id="processing-step-subject">If the <tref>JSON object</tref> has a <code>@subject</code> key:
-          <ol class="algorithm">
-            <li>
-              If the value is a <tref>string</tref>, set the <tref>active object</tref> to the result of performing
-              <a href="#iri-expansion">IRI Expansion</a>. Generate a
-              triple representing the <tref>active subject</tref>, the <tref>active property</tref> and the
-              <tref>active object</tref>. Set the <tref>active subject</tref> to the <tref>active object</tref>.
-            </li>
-            <li>
-              Create a new <tref>processor state</tref> using copies of the <tref>active context</tref>,
-              <tref>active subject</tref> and <tref>active property</tref> and process the value
-              starting at <a href="#processing-step-associative">Step 2</a>, set the <tref>active
-              subject</tref> to the result and proceed using the previous <tref>processor state</tref>.
-            </li>
-          </ol>
-        </li>
-        <li>
-          If the <tref>JSON object</tref> does not have a <code>@subject</code> key, set the <tref>active
-          object</tref> to newly generated <tdef>blank node identifier</tdef>. Generate a triple
-          representing the <tref>active subject</tref>, the <tref>active property</tref> and the
-          <tref>active object</tref>. Set the <tref>active subject</tref> to the <tref>active
-          object</tref>.
-        </li>
-        <li>
-          For each key in the <tref>JSON object</tref> that has not already been processed, perform
-          the following steps:
-          <ol class="algorithm">
-            <li>
-              If the key is <code>@type</code>, set the <tref>active property</tref>
-              to <code>rdf:type</code>.
-            </li>
-            <li>Otherwise, set the <tref>active property</tref> to the result of performing
-            <a href="#iri-expansion">IRI Expansion</a> on the key.</li>
-            <li>
-              Create a new <tref>processor state</tref> copies of the <tref>active context</tref>,
-              <tref>active subject</tref> and <tref>active property</tref> and process the value
-              starting at <a href="#processing-step-associative">Step 2</a> and proceed using the
-              previous <tref>processor state</tref>.
-            </li>
-          </ol>
-        </li>
-        <li>
-          Return the <tref>active object</tref> to the calling location.
-        </li>
-      </ol>
-    </li>
-
-    <li>
-      If a regular <tref>array</tref> is detected, process each value in the <tref>array</tref> by doing the following
-      returning the result of processing the last value in the <tref>array</tref>:
-
-      <ol class="algorithm">
-        <li>
-          Create a new <tref>processor state</tref> using copies of the <tref>active
-          context</tref>, <tref>active subject</tref> and <tref>active property</tref> and process the value
-          starting at <a href="#processing-step-associative">Step 2</a> then proceed using the previous
-          <tref>processor state</tref>.
-        </li>
-      </ol>
-    </li>
-
-    <li>
-      If a <tref>string</tref> is detected:
-      <ol class="algorithm">
-        <li>
-          If the <tref>active property</tref> is the target of a <code>@iri</code> coercion,
-          set the <tref>active object</tref> by
-          performing <a href="#iri-expansion">IRI Expansion</a> on the string.
-        </li>
-        <li>
-          Otherwise, if the <tref>active property</tref> is the target of coercion,
-          set the <tref>active object</tref> by creating a <tref>typed literal</tref> using
-          the string and the coercion key as the datatype IRI.
-        </li>
-        <li>
-          Otherwise, set the <tref>active object</tref> to a <tref>plain literal</tref> value created from
-          the string.
-        </li>
-      </ol>
-      Generate a
-      triple representing the <tref>active subject</tref>, the <tref>active property</tref> and the
-      <tref>active object</tref>.
-    </li>
-
-    <li>
-      If a <tref>number</tref> is detected, generate a <tref>typed literal</tref> using a string representation of
-      the value with datatype set to either <code>xsd:integer</code> or
-      <code>xsd:double</code>, depending on if the value contains a
-      fractional and/or an exponential component. Generate a triple using the <tref>active
-      subject</tref>, <tref>active property</tref> and the generated typed literal.
-    </li>
-
-    <li>
-      Otherwise, if <strong>true</strong> or <strong>false</strong> is detected,
-      generate a triple using the <tref>active subject</tref>, <tref>active property</tref>
-      and a <tref>typed literal</tref> value created from the string representation of the
-      value with datatype set to <code>xsd:boolean</code>.
-    </li>
-  </ol>
-</section>
-
-<!-- THIS SHOULD BE SPLIT OUT INTO A SEPARATE DOCUMENT
-
-<section>
-<h1>Best Practices</h1>
-
-<p>The nature of Web programming allows one to use basic technologies, such as
-JSON-LD, across a variety of systems and environments. This section attempts to
-describe some of those environments and the way in which JSON-LD can be
-integrated in order to help alleviate certain development headaches.
-</p>
-
-<section>
-<h2>JavaScript</h2>
-
-<p class="issue">It is expected that JSON-LD will be used quite a bit in
-JavaScript environments, however, features like the expanded form for
-object values mean that using JSON-LD directly in JavaScript may be
-annoying without a middleware layer such as a simple library that
-converts JSON-LD markup before JavaScript uses it. One could say that JSON-LD
-is a good fit for the RDF API, which enables a variety of RDF-based
-Web Applications, but some don't want to require that level of functionality
-just to use JSON-LD. The group is still discussing the best way to proceed,
-so input on how JSON-LD could more easily be utilized in JavaScript
-environments would be very much appreciated.
-</p>
-</section>
-
-<section>
-<h2>Schema-less Databases</h2>
-
-<p class="issue">Databases such as CouchDB and MongoDB allow the creation of
-schema-less data stores. RDF is a type of schema-less data model and thus
-lends itself to databases such as CouchDB and MongoDB. Both of these databases
-can use JSON-LD as their storage format. The group needs feedback from
-CouchDB and MongoDB experts regarding the usefulness of JSON-LD in those
-environments.</p>
-
-<p class="issue">MongoDB does not allow the '.' character to be used in
-key names. This prevents developers from storing IRIs as keys, which also
-prevents storage of the data in normalized form. While this issue can
-be avoided by using <tref>prefix</tref>es for key values, it is not known if this
-mechanism is enough to allow JSON-LD to be used in MongoDB in a way that
-is useful to developers.
-</p>
-
--->
-</section>
-
-</section>
-
-<section class="appendix">
-<h1>Experimental Concepts</h1>
-
-<p class="issue">There are a few advanced concepts where it is not clear
-whether or not the JSON-LD specification is going to support the complexity
-necessary to support each concept. The entire section on Advanced Concepts
-should be considered as discussion points; it is merely a list of
-possibilities where all of the benefits and drawbacks have not been explored.
-</p>
-
-<section>
-<h2>Disjoint Graphs</h2>
-
-<p>When serializing an RDF graph that contains two or more sections of the
-graph which are entirely disjoint, one must use an <tref>array</tref> to express the graph
-as two graphs. This may not be acceptable to some authors, who would rather
-express the information as one graph. Since, by definition, disjoint graphs
-require there to be two top-level objects, JSON-LD utilizes a mechanism that
-allows disjoint graphs to be expressed using a single graph.</p>
-
-<p>Assume the following RDF graph:</p>
-
-<pre class="example" data-transform="updateExample">
-<!--
-<http://example.org/people#john>
-   <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
-      <http://xmlns.com/foaf/0.1/Person> .
-<http://example.org/people#jane>
-   <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
-      <http://xmlns.com/foaf/0.1/Person> .
--->
-</pre>
-
-<p>Since the two subjects are entirely disjoint with one another, it is
-impossible to express the RDF graph above using a single <tref>JSON object</tref>.</p>
-
-<p>In JSON-LD, one can use the subject to express disjoint graphs as a
-single graph:</p>
-
-<pre class="example" data-transform="updateExample">
-<!--
-{
-  "@context": {
-    "Person": "http://xmlns.com/foaf/0.1/Person"
-  },
-  "@subject":
-  [
-    {
-      "@subject": "http://example.org/people#john",
-      "@type": "Person"
-    },
-    {
-      "@subject": "http://example.org/people#jane",
-      "@type": "Person"
-    }
-  ]
-}
--->
-</pre>
-
-<p>A disjoint graph could also be expressed like so:</p>
-
-<pre class="example" data-transform="updateExample">
-<!--
-[
-  {
-    "@subject": "http://example.org/people#john",
-    "@type": "http://xmlns.com/foaf/0.1/Person"
-  },
-  {
-    "@subject": "http://example.org/people#jane",
-    "@type": "http://xmlns.com/foaf/0.1/Person"
-  }
-]
--->
-</pre>
-
-<p class="note">Warning: Using this serialisation format it is impossible to include <code>@context</code>
-  given that the document's data structure is an array and not an object.</p>
-
-</section>
-
-<section>
-  <h2>Lists</h2>
-  <p>
-    Because graphs do not describe ordering for links between nodes,  in contrast to plain JSON, multi-valued properties
-    in JSON-LD do not provide an ordering of the listed objects. For example, consider the following
-    simple document:
-  </p>
-  <pre class="example" data-transform="updateExample">
-  <!--
-  {
-  ...
-    "@subject": "http://example.org/people#joebob",
-    "nick": ****["joe", "bob", "jaybee"]****,
-  ...
-  }
-  -->
-  </pre>
-  <p>
-    This results in three triples being generated, each relating the subject to an individual
-    object, with no inherent order.</p>
-  <p>To preserve the order of the objects, RDF-based languages, such as [[TURTLE]]
-    use the concept of an <code>rdf:List</code> (as described in [[RDF-SCHEMA]]). This uses a sequence
-    of unlabeled nodes with properties describing a value, a null-terminated next property. Without
-    specific syntactical support, this could be represented in JSON-LD as follows:
-  </p>
-  <pre class="example" data-transform="updateExample">
-  <!--
-  {
-  ...
-    "@subject": "http://example.org/people#joebob",
-    "nick": ****{****,
-      ****"@first": "joe"****,
-      ****"@rest": {****
-        ****"@first": "bob"****,
-        ****"@rest": {****
-          ****"@first": "jaybee"****,
-          ****"@rest": "@nil"****
-          ****}****
-        ****}****
-      ****}****
-    ****}****,
-  ...
-  }
-  -->
-  </pre>
-  <p>
-    As this notation is rather unwieldy and the notion of ordered collections is rather important
-    in data modeling, it is useful to have specific language support. In JSON-LD, a list may
-    be represented using the <code>@list</code> keyword as follows:
-  </p>
-  <pre class="example" data-transform="updateExample">
-  <!--
-  {
-  ...
-    "@subject": "http://example.org/people#joebob",
-    "foaf:nick": ****{"@list": ["joe", "bob", "jaybee"]}****,
-  ...
-  }
-  -->
-  </pre>
-  <p>
-    This describes the use of this <tref>array</tref> as being ordered, and order is maintained through
-    normalization and RDF conversion. If every use of a given multi-valued property is a
-    list, this may be abbreviated by adding an <code>@coerce</code> term:
-  </p>
-  <pre class="example" data-transform="updateExample">
-  <!--
-  {
-    ****"@context": {****
-      ...
-      ****"@coerce": {****
-        ****"@list": ["foaf:nick"]****
-      ****}****
-    ****}****,
-  ...
-    "@subject": "http://example.org/people#joebob",
-    "foaf:nick": ****["joe", "bob", "jaybee"]****,
-  ...
-  }
-  -->
-  </pre>
-  <p class="issue">There is an ongoing discussion about this issue. One of the <a href="https://github.com/json-ld/json-ld.org/issues/12">proposed solutions</a> is allowing to change the default behaviour so that arrays are considered as ordered lists by default.</p>
-  <section><h3 id="list-expansion">Expansion</h3>
-    <p class="issue">TBD.</p>
-  </section>
-  <section><h3 id="list-normalization">Normalization</h3>
-    <p class="issue">TBD.</p>
-  </section>
-  <section><h3 id="list-rdf">RDF Conversion</h3>
-    <p>
-      To support RDF Conversion of lists, <a href="#rdf-conversion-algorithm">RDF Conversion Algorithm</a>
-      is updated as follows:
-    </p>
-    <ol class="algorithm update">
-      <li>
-        <span class="list-number">2.4a.</span>
-        If the <tref>JSON object</tref> has a <code>@list</code> key and the value is an <tref>array</tref>
-        process the value as a list starting at <a href="#processing-step-list">Step 3a</a>.
-      </li>
-      <li>
-        <span class="list-number">2.7.3.</span>
-        Create a new <tref>processor state</tref> copies of the <tref>active context</tref>,
-        <tref>active subject</tref> and <tref>active property</tref>.
-        <ol class="algorithm">
-          <li>
-            If the <tref>active property</tref> is the target of a <code>@list</code> coercion,
-            and the value is an <tref>array</tref>,
-            process the value as a list starting at <a href="#processing-step-list">Step 3a</a>.
-          </li>
-          <li>
-            Otherwise, process the value starting at
-            <a href="#processing-step-associative">Step 2</a>.
-          </li>
-          <li>Proceed using the previous <tref>processor state</tref>.</li>
-        </ol>
-      </li>
-      <li id="processing-step-list">
-        <span class="list-number">3a.</span>
-        Generate an RDF List by linking
-        each element of the list using <code>rdf:first</code> and <code>rdf:next</code>, terminating the list with <code>rdf:nil</code>
-        using the following sequence:
-        <ol class="algorithm">
-          <li>
-            If the list has no element, generate a triple using the <tref>active subject</tref>, <tref>active property</tref>
-            and <code>rdf:nil</code>.
-          </li>
-          <li>
-            Otherwise, generate a triple using using the <tref>active subject</tref>, <tref>active property</tref>
-            and a newly generated BNode identified as <em>first <tdef>blank node identifier</tdef></em>.
-          </li>
-          <li>
-            For each element other than the last element in the list:
-            <ol class="algorithm">
-              <li>Create a processor state using the active context, <em>first <tdef>blank node identifier</tdef></em> as the <tref>active subject</tref>, and <code>rdf:first</code> as the <tref>active property</tref>.</li>
-              <li>Unless this is the last element in the list, generate a new BNode identified as <em>rest <tdef>blank node identifier</tdef></em>, otherwise use <code>rdf:nil</code>.</li>
-              <li>Generate a new triple using <em>first <tdef>blank node identifier</tdef></em>, <code>rdf:rest</code> and <em>rest <tdef>blank node identifier</tdef></em>.</li>
-              <li>Set <em>first <tdef>blank node identifier</tdef></em> to <em>rest <tdef>blank node identifier</tdef></em>.</li>
-            </ol>
-          </li>
-        </ol>
-      </li>
-    </ol>
-  </section>
-</section>
-
-</section>
-
 <section class="appendix">
 <h2>Markup Examples</h2>