
Collections in PROV
Goal:

• To model structured data in terms of changes to its content as an
effect of updates

Approach:
• assume a very general data structure

– set of key-value pairs (map, associative arrays, dictionaries...)
• where values can be collections (nesting)

– these subsume more complex structures
• ordered nested lists, relational tables, etc.

• Introduce data types to identify collection entities:
– prov:Collection, prov:EmptyCollection

• Introduce relations to capture the effect of create, insert, remove
operations

1

Relations for collection updates
Insertion relation:

CollectionAfterInsertion(c2, c1, k, v)
states that c2 is the state of the collection following the insertion of
pair (k,v) into collection c1;
Removal relation:

CollectionAfterRemoval(c2,c1, k)
states that c2 is the state of the collection following the removal of
the pair corresponding to key k from c1.

2

 entity(c, [prov:type="EmptyCollection"])
 entity(v1)
 entity(v2)
 entity(c1, [prov:type="Collection"])
 entity(c2, [prov:type="Collection"])

 CollectionAfterInsertion(c1, c, "k1", v1) // c1 = {("k1",v1)}
 CollectionAfterInsertion(c2, c1, "k2", v2)
 // c2 = {("k1",v1), ("k2", v2)}
 CollectionAfterRemoval(c3, c2, k1) // c3 = { ("k2",v2) }

Some considerations
• Collections are abstract

– No assumptions are made regarding the underlying data structure used to store
and manage collections

– In particular, no assumptions are needed regarding the mutability of a data
structure that is subject to updates.

• The state of a collection (i.e., the set of key-value pairs it contains)
at a given point in a sequence of operations is never stated
explicitly.
– Rather, it can be obtained by querying the chain of derivations involving insertions

and removals.
– Entity type emptyCollection can be used in this context as it marks the start of a

sequence of collection operations.

• ...further considerations and constraints omitted for simplicity
– please ask!

3

Further cases and examples
• It is possible to have multiple derivations from a single root

collection

4

 entity(c, [prov:type="prov:EmptyCollection"%%xsd:QName])
 entity(k1)
 entity(v1)
 entity(k2)
 entity(v2)
 entity(k3)
 entity(v3)
 entity(c1, [prov:type="prov:Collection"])
 entity(c2, [prov:type="prov:Collection"])
 entity(c3, [prov:type="prov:Collection"])

 CollectionAfterInsertion(c1, c, k1, v1) // c1 = { (k1,v1) }
 CollectionAfterInsertion(c2, c, k2, v2) // c2 = { (k2 v2) }
 CollectionAfterInsertion(c3, c1, k3,v3) // c3 = { (k1,v1), (k3,v3) }

Batch updates

5

One can have multiple assertions regarding the state of a collection following a set
of insertions, for example:

CollectionAfterInsertion(c2,c1, k1, v1)
CollectionAfterInsertion(c2,c1, k2, v2)
...

This is interpreted as " c2 is the state that results from inserting (k1, v1), (k2, v2)
etc. into c1

Keys are unique.
The following set of insertions:

CollectionAfterInsertion(c1, c, k, v1)
CollectionAfterInsertion(c1, c, k, v2)

entails v1==v2.

