
4/23/13 9:07 PMSemantics of the PROV Data Model

Page 1 of 33file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#bib-PROV-DICTIONARY

Semantics of the PROV Data Model
W3C Working Group Note 30 April 2013
This version:

http://www.w3.org/TR/2013/NOTE-prov-sem-20130430/
Latest published version:

http://www.w3.org/TR/prov-sem/
Previous version:

http://www.w3.org/TR/2013/WD-prov-sem-20130312/
Editor:

James Cheney, University of Edinburgh

This document is also available in this non-normative format: PDF

Copyright © 2012-2013 W3C® (MIT, ERCIM, Keio, Beihang), All Rights Reserved. W3C liability, trademark and document use rules apply.

Abstract
Provenance is information about entities, activities, and people involved in producing a piece of data or thing, which can be used to form
assessments about its quality, reliability or trustworthiness. PROV-DM is the conceptual data model that forms a basis for the W3C provenance
(PROV) family of specifications.

This document presents a model-theoretic semantics for the PROV data model, viewing PROV-DM statements as atomic formulas in the sense
of first-order logic, and viewing the constraints and inferences specified in PROV-CONSTRAINTS as a first-order theory. It is shown that valid
PROV instances (in the sense of PROV-CONSTRAINTS) correspond to satisfiable theories. This information may be useful to researchers or
users of PROV to understand the intended meaning and use of PROV for modeling information about the actual history, derivation or evolution of
Web resources. It may also be useful for development of additional constraints or inferences for reasoning about PROV or integration of PROV
with other Semantic Web vocabularies. It is not proposed as a canonical or required semantics of PROV and does not place any constraints on
the use of PROV.

The PROV Document Overview describes the overall state of PROV, and should be read before other PROV documents.

Status of This Document
This section describes the status of this document at the time of its publication. Other documents may supersede this document. A list of current
W3C publications and the latest revision of this technical report can be found in the W3C technical reports index at http://www.w3.org/TR/.

PROV Family of Documents

This document is part of the PROV family of documents, a set of documents defining various aspects that are necessary to achieve the vision of
inter-operable interchange of provenance information in heterogeneous environments such as the Web. These documents are listed below.
Please consult the [PROV-OVERVIEW] for a guide to reading these documents.

PROV-OVERVIEW (Note), an overview of the PROV family of documents [PROV-OVERVIEW];
PROV-PRIMER (Note), a primer for the PROV data model [PROV-PRIMER];
PROV-O (Recommendation), the PROV ontology, an OWL2 ontology allowing the mapping of PROV to RDF [PROV-O];
PROV-DM (Recommendation), the PROV data model for provenance [PROV-DM];
PROV-N (Recommendation), a notation for provenance aimed at human consumption [PROV-N];
PROV-CONSTRAINTS (Recommendation), a set of constraints applying to the PROV data model [PROV-CONSTRAINTS];
PROV-XML (Note), an XML schema for the PROV data model [PROV-XML];
PROV-AQ (Note), the mechanisms for accessing and querying provenance [PROV-AQ];
PROV-DICTIONARY (Note) introduces a specific type of collection, consisting of key-entity pairs [PROV-DICTIONARY];
PROV-DC (Note) provides a mapping between PROV and Dublin Core Terms [PROV-DC];
PROV-SEM (Note), a declarative specification in terms of first-order logic of the PROV data model (this document);
PROV-LINKS (Note) introduces a mechanism to link across bundles [PROV-LINKS].

Implementations Encouraged

The Provenance Working Group encourages implementations that make use of or extend the semantics in this document. Although work on this
document by the Provenance Working Group is complete, errors may be recorded in the errata or and these may be addressed in future
revisions.

Please Send Comments

This document was published by the Provenance Working Group as a Working Group Note. If you wish to make comments regarding this
document, please send them to public-prov-comments@w3.org (subscribe, archives). All comments are welcome.

Publication as a Working Group Note does not imply endorsement by the W3C Membership. This is a draft document and may be updated,

http://www.w3.org/
http://www.w3.org/TR/2013/NOTE-prov-sem-20130430/
http://www.w3.org/TR/prov-sem/
http://www.w3.org/TR/2013/WD-prov-sem-20130312/
http://homepages.inf.ed.ac.uk/jcheney/
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.pdf
http://www.w3.org/Consortium/Legal/ipr-notice#Copyright
http://www.w3.org/
http://www.csail.mit.edu/
http://www.ercim.eu/
http://www.keio.ac.jp/
http://ev.buaa.edu.cn/
http://www.w3.org/Consortium/Legal/ipr-notice#Legal_Disclaimer
http://www.w3.org/Consortium/Legal/ipr-notice#W3C_Trademarks
http://www.w3.org/Consortium/Legal/copyright-documents
http://www.w3.org/TR/
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#bib-PROV-OVERVIEW
http://www.w3.org/TR/2013/NOTE-prov-overview-20130430/
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#bib-PROV-OVERVIEW
http://www.w3.org/TR/2013/NOTE-prov-primer-20130430/
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#bib-PROV-PRIMER
http://www.w3.org/TR/2013/REC-prov-o-20130430/
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#bib-PROV-O
http://www.w3.org/TR/2013/REC-prov-dm-20130430/
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#bib-PROV-DM
http://www.w3.org/TR/2013/REC-prov-n-20130430/
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#bib-PROV-N
http://www.w3.org/TR/2013/REC-prov-constraints-20130430/
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#bib-PROV-CONSTRAINTS
http://www.w3.org/TR/2013/NOTE-prov-xml-20130430/
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#bib-PROV-XML
http://www.w3.org/TR/2013/NOTE-prov-aq-20130430/
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#bib-PROV-AQ
http://www.w3.org/TR/2013/NOTE-prov-dictionary-20130430/
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#bib-PROV-DICTIONARY
http://www.w3.org/TR/2013/NOTE-prov-dc-20130430/
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#bib-PROV-DC
http://www.w3.org/TR/2013/NOTE-prov-sem-20130430/
http://www.w3.org/TR/2013/NOTE-prov-links-20130430/
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#bib-PROV-LINKS
http://www.w3.org/2011/prov/errata.html
http://www.w3.org/2011/prov/
mailto:public-prov-comments@w3.org
mailto:public-prov-comments-request@w3.org?subject=subscribe
http://lists.w3.org/Archives/Public/public-prov-comments/

4/23/13 9:07 PMSemantics of the PROV Data Model

Page 2 of 33file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#bib-PROV-DICTIONARY

replaced or obsoleted by other documents at any time. It is inappropriate to cite this document as other than work in progress.

This document was produced by a group operating under the 5 February 2004 W3C Patent Policy. W3C maintains a public list of any patent
disclosures made in connection with the deliverables of the group; that page also includes instructions for disclosing a patent. An individual who
has actual knowledge of a patent which the individual believes contains Essential Claim(s) must disclose the information in accordance with
section 6 of the W3C Patent Policy.

Table of Contents
1. Introduction

1.1 Purpose of this document
1.2 Structure of this document
1.3 Audience

2. Basics
2.1 Identifiers
2.2 Attributes and Values
2.3 Times
2.4 Atomic Formulas
2.5 First-Order Formulas

3. Structures and Interpretations
3.1 Things
3.2 Objects

3.2.1 Entities
3.2.1.1 Plans
3.2.1.2 Collections

3.2.2 Activities
3.2.3 Agents
3.2.4 Influences

3.2.4.1 Events
3.2.4.2 Associations
3.2.4.3 Attributions
3.2.4.4 Communications
3.2.4.5 Delegations
3.2.4.6 Derivations

3.3 Additional axioms
3.4 Putting it all together
3.5 Interpretations

4. Semantics
4.1 Satisfaction
4.2 Attribute matching
4.3 Semantics of Element Formulas

4.3.1 Entity
4.3.2 Activity
4.3.3 Agent

4.4 Semantics of Relations
4.4.1 Generation
4.4.2 Use
4.4.3 Invalidation
4.4.4 Association
4.4.5 Start
4.4.6 End
4.4.7 Attribution
4.4.8 Communication
4.4.9 Delegation
4.4.10 Derivation

4.4.10.1 Precise
4.4.10.2 Imprecise

4.4.11 Influence
4.4.12 Specialization
4.4.13 Alternate
4.4.14 Membership

4.5 Semantics of Auxiliary Formulas
4.5.1 Precedes and Strictly Precedes
4.5.2 notNull
4.5.3 typeOf

5. Inferences and Constraints
5.1 Inferences
5.2 Constraints

5.2.1 Uniqueness constraints
5.2.2 Ordering constraints
5.2.3 Typing constraints
5.2.4 Impossibility constraints

6. Soundness and Completeness
6.1 Soundness
6.2 Weak Completeness

6.2.1 Sets
6.2.2 Functions
6.2.3 Relations
6.2.4 Axioms
6.2.5 Main results

A. Acknowledgements

http://www.w3.org/Consortium/Patent-Policy-20040205/
http://www.w3.org/2004/01/pp-impl/46974/status
http://www.w3.org/Consortium/Patent-Policy-20040205/#def-essential
http://www.w3.org/Consortium/Patent-Policy-20040205/#sec-Disclosure
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#introduction
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#purpose
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#structure-of-this-document
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#audience
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#basics
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#identifiers
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#attributes-and-values
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#times
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#formulas
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#first-order-formulas
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#structures
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#things-1
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#objects-1
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#entities-1
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#plans-1
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#collections-1
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#activities-1
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#agents-1
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#influences-1
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#events-1
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#associations-1
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#attributions-1
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#communications-1
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#delegations-1
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#derivations-1
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#additional-axioms
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#putting-it-all-together
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#interpretations
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#semantics
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#satisfaction
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#attribute-matching
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#semantics-of-element-formulas
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#entity
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#activity
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#agent
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#semantics-of-relations
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#generation
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#use
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#invalidation
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#association
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#start
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#end
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#attribution
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#communication
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#delegation
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#derivation
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#precise
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#imprecise
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#influence
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#specialization
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#alternate
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#membership
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#semantics-of-auxiliary-formulas
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#precedes-and-strictly-precedes
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#notnull
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#typeof
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#theory
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#inferences
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#constraints
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#uniqueness-constraints
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#ordering-constraints
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#typing-constraints
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#impossibility-constraints
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#soundness-completeness
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#soundness
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#completeness
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#sets
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#functions
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#relations
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#axioms-1
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#main-results
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#acknowledgements

4/23/13 9:07 PMSemantics of the PROV Data Model

Page 3 of 33file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#bib-PROV-DICTIONARY

B. References
B.1 Informative references

1. Introduction
Provenance is a record that describes the people, institutions, entities, and activities involved in producing, influencing, or delivering a piece of
data or a thing. [PROV-DM] This document complements the PROV-DM specification [PROV-DM] that defines a data model for provenance on
the Web, and the PROV-CONSTRAINTS specification [PROV-CONSTRAINTS] that specifies definitions, inferences, and constraints that can be
used to reason about PROV documents, or determine their validity. This document provides a formal semantics of PROV, providing a formal
counterpart to the informal descriptions and motivations given elsewhere in PROV specifications.

1.1 Purpose of this document

The PROV-DM and PROV-CONSTRAINTS specifications give motivating examples that provide an intuition about the meaning of the constructs.
For some concepts, such as use, start, end, generation, invalidation, and derivation, the meaning is either obvious or situation-dependent.
However, during the development of PROV, the importance of additional concepts became evident, but the intuitive meaning or correct use of
these concepts were not clear. For example, the and relations are used in PROV to relate different entities that
present aspects of "the same thing". Over time the working group came to a consensus about these concepts and how they are to be used, but
this understanding is based on abstract notions that are not explicit in PROV documents; instead, some of their properties are captured formally
through certain constraints and inferences, while others are not captured in PROV specifications at all.

The purpose of this document is to present the working group's consensus view of the semantics of PROV, using tools from mathematical logic,
principally model theory (though our use of these tools is lightweight). This information may be useful to users for understanding the intent behind
certain features of PROV, to researchers investigating richer forms of reasoning over provenance, or to future efforts building upon PROV. It is
intended as an exploration of one semantics for PROV, not a definitive specification of the only semantics of PROV. We provide a semantics
that satisfies all of the constraints on valid PROV instances, and such that valid PROV instances correspond to satisfiable theories: every valid
instance has a model, and vice versa.

The semantics has some appealing properties. Specifically, it provides a declarative counterpart to the operational definition of validity taken in
PROV-CONSTRAINTS. In the specification, validity is defined via a normalization process followed by constraint checking on the normal form.
This approach was adopted to keep the specification closer to implementations, although other implementations are possible and allowed. In
addition to providing a semantics, this document shows that the operational presentation of PROV validity checking is equivalent to the
declarative presentation adopted here. This could help justify alternative approaches to validity checking.

This document mostly considers the semantics of PROV statements and instances. PROV documents can consist of multiple instances, such as
named bundles. The semantics do not cover general PROV documents, but the semantics can be used on each instance in a document
separately, just as PROV-CONSTRAINTS specifies that each instance in a document is to be validated separately. So, in the rest of this
document, we discuss only PROV instances and not PROV documents. The semantics of extensions of PROV, such as dictionaries [PROV-
DICTIONARY] and linking across bundles [PROV-LINKS], are beyond the scope of this document.

This document has been reviewed by the Working Group, but the theorems and proofs have not been formally peer-reviewed in the sense of an
academic paper. Thus, the Working Group believes this document is an appropriate starting point for future study of the semantics of PROV, but
further work may be needed.

1.2 Structure of this document

Section 2 summarizes the basic concepts from mathematical logic used in the semantics, recapitulates how PROV statements can be
viewed as atomic formulas, and introduces some auxiliary formulas.
Section 3 presents the mathematical structures used for situations that PROV statements can describe.
Section 4 defines the semantics of PROV statements and auxiliary formulas, indicating when a given formula is satisfied in a structure.
Section 5 presents the inferences and constraints from PROV-CONSTRAINTS as first-order formulas, and gives brief justifications for their
soundness.
Section 6 summarizes the main results relating PROV-CONSTRAINTS validation to the semantics, including soundness and a weak form of
completeness: a PROV instance is valid if and only if it has a model.

1.3 Audience

This document assumes familiarity with [PROV-DM] and [PROV-CONSTRAINTS] and employs (a simplified form of) [PROV-N] notation. In
particular it assumes familiarity with the concepts from logic, and the relationship between PROV statements and instances and first-order
formulas and theories, respectively, presented in Section 2.5 of PROV-CONSTRAINTS.

This document may be useful to users of PROV who have a formal background and are interested in the rationale for some of the constructs of
PROV; for researchers investigating extensions of PROV or alternative approaches to reasoning about PROV; or for future efforts on provenance
standardization.

2. Basics

2.1 Identifiers

A lowercase symbol on its own denotes an identifier. Identifiers are viewed as variables from the point of view of logic. Identifiers denote
objects, and two different identifiers and may denote equal or different objects. We write for the set of identifiers of interest in a
given situation (typically, the set of identifiers present in the PROV instance of interest).

2.2 Attributes and Values

We assume a set of attribute labels and a set of possible values of attributes. To allow for the fact that some attributes can have
undefined or multiple values, we sometimes use the set , that is, the set of sets of values. Thus, we can use the empty set to stand for
an undefined value and to stand for the set of values of a two-valued attribute.

alternateOf specializationOf

x,y,...
x y Identifiers

Attributes Values
P(Values)

{a,b}

file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#references
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#informative-references
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#bib-PROV-DM
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#bib-PROV-DM
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#bib-PROV-CONSTRAINTS
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#bib-PROV-DICTIONARY
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#bib-PROV-LINKS
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#basics
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#structures
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#semantics
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#theory
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#soundness-completeness
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#bib-PROV-DM
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#bib-PROV-CONSTRAINTS
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#bib-PROV-N
http://www.w3.org/TR/2013/REC-prov-constraints-20130430/#overview

4/23/13 9:07 PMSemantics of the PROV Data Model

Page 4 of 33file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#bib-PROV-DICTIONARY

2.3 Times

We assume an ordered set of time instants, where and is a linear order.

2.4 Atomic Formulas

The following atomic formulas correspond to the statements of PROV-DM. We assume that definitions 1-4 of PROV-CONSTRAINTS have been
applied in order to expand all optional parameters; thus, we use uniform notation instead of the semicolon notation .

Each parameter is either an identifier, a constant (e.g. a time or other literal value in an attribute list), or a null symbol " ". Placeholder symbols "
" can only appear in the specified arguments in and in , as shown in the grammar below.

Remark

We include the standard PROV collection types (and) and the membership relation ; however, we do
not model dictionaries or the insertion or deletion relations in PROV-DICTIONARY [PROV-DICTIONARY], since these are not part of the
PROV recommendations. If these features are incorporated into future standards, their semantics (and the soundness of the associated
constraints) should be modeled. We omit the prefixes from the and types.

As stated in the Introduction, we do not explicitly model bundles or PROV documents; however, each instance can be viewed as a set of
formulas and can be modeled separately. The semantics of the standard features of PROV can be defined without talking about multiple
instances; however, the relation in PROV-LINKS [PROV-LINKS] is intended to support linking across bundles. Future editions of
PROV may incorporate or other cross-instance assertions, and if so this semantics should be generalized in order to provide a
rationale for such an extension and to establish the soundness of constraints associated with .

2.5 First-Order Formulas

We also consider the usual connectives and quantifiers of first-order logic.

3. Structures and Interpretations
In this section we define mathematical structures that can be used to interpret PROV formulas and instances. A structure consists of a
collection of sets, functions and relations. The components of a structure are given in the rest of the section in components, highlighted in
boxes.

Remark

(Times,≤) Times⊆Values ≤

r(id,a1,…,an) r(id;a1,…,an)

−
− pl wasAssociatedWith a,g,u wasDerivedFrom

atomic_formula ::= element_formula
| relation_formula
| auxiliary_formula

element_formula ::= entity(id,attrs)
| activity(id,st,et,attrs)
| agent(id,attrs)

relation_formula ::= wasGeneratedBy(id,e,a,t,attrs)
| used(id,e,a,t,attrs)
| wasInvalidatedBy(id,e,a,t,attrs)
| wasStartedBy(id,a2,e,a1,t,attrs)
| wasEndedBy(id,a2,e,a1,t,attrs)
| wasAssociatedWith(id,ag,act,pl,attrs)
| wasAssociatedWith(id,ag,act,−,attrs)
| wasAttributedTo(id,e,ag,attrs)
| actedOnBehalfOf(if,ag2,ag1,act,attrs)
| wasInformedBy(id,a2,a1,attrs)
| wasDerivedFrom(id,e2,e1,act,g,u,attrs)
| wasDerivedFrom(id,e2,e1,−,−,−,attrs)
| wasInfluencedBy(id,x,y,attrs)
| alternateOf(e1,e2)
| specializationOf(e1,e2)
| hadMember(c,e)

auxiliary_formula ::= x strictlyPrecedes y
| x precedes y
| notNull(x)
| typeOf(x,ty)

attrs ::= [attr1=v1,…,attrn=vn]
ty ::= entity

| activity
| agent
| Collection
| EmptyCollection

Collection EmptyCollection hadMember

prov Collection EmptyCollection

mentionOf
mentionOf

mentionOf

ϕ ::= atomic_formula
| True
| False
| x=y
| ¬ ϕ
| ϕ1∧ϕ2
| ϕ1∨ϕ2
| ϕ1⇒ϕ2
| ∀x.ϕ
| ∃x.ϕ

W
W

file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#bib-PROV-DICTIONARY
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#bib-PROV-LINKS

4/23/13 9:07 PMSemantics of the PROV Data Model

Page 5 of 33file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#bib-PROV-DICTIONARY

We use the term "component" here in a different sense than in PROV-DM. Here, the components are parts of a large definition, whereas
PROV-DM defines six components that group different parts of the PROV data model.

3.1 Things

Things is a set of things in the situation being modeled. Each thing has an associated set of and attributes whose values can change over
time. Different kinds of are specified further below.

To model this, a structure includes:

Component 1 (things)

1. a set of things
2. a set of events
3. a function from things to associated sets of events.
4. a function giving the possible values of each attribute of a at the instant of a given

event.
5. Attributes are only defined during the events of a thing, that is, implies .

The range of is the set , indicating that is essentially a multi-valued function that returns a set of values (possibly empty).
When , we say that attribute is undefined for at event .

Note that this description does not say what the structure of a is, only how it may be described in terms of its events and attribute values. A
thing could be a record of fixed attribute values; it could be a bear; it could be the Royal Society; it could be a transcendental number like . All
that matters from our point of view is that we know how to map the to its events and attribute mapping.

The identity of a Thing is not observable through its attributes or events, so it is possible for two different to be indistinguishable by their
attribute values and events. That is, if the set of and the attributes are specified as for each

 and , this does not imply that .

 are associated with certain kinds of called , defined in the next subsection. Specifically, the function associates an
 to a .

3.2 Objects

 are things in the world that have attributes that can change over time. may not have distinguishing features that are readily
observable and permanent. In PROV, we do not talk explicitly about , but instead we talk about various objects that have discrete, fixed
features, and relationships among these objects. Some objects, called , are associated with , and their fixed attributes need to
match those of the associated during their common events. Others correspond to agents, activities, or identifiable interactions among them.

In this section, we detail the different subsets of , and give disjointness constraints and associated functions. Generally, these constraints
are necessary to validate disjointness constraints from PROV-CONSTRAINTS [PROV-CONSTRAINTS].

An Object is described by a set of events and attributes with fixed values. Objects encompass entities, activities, agents, and interactions (i.e.,
usage, generation, and other events or influence relations). To model this, a structure includes:

Component 2 (objects)

1. a set
2. a function from objects to associated sets of events.
3. a function .

Intuitively, is the set of events in which participated. The set is the set of values of attribute during the object's events.

As with Things, the range of is sets of values, making effectively a multivalued function. It is also possible to have two different objects
that are indistinguishable by their attributes and associated events. Objects are not things, and the sets of and are disjoint;
however, certain objects, namely entities, are associated with things.

Remark

Disjointness between and is not necessary but is assumed in order to avoid confusion between the different categories (time-
varying vs fixed).

3.2.1 Entities

An entity is a kind of object that fixes some aspects of a thing. We assume:

Component 3 (entities)

1. a set of entities, disjoint from below.
2. a function that associates each with a , such that and for each

Events
Events

W

Things
Events

events:Things→P(Events)
value:Things×Attributes×Events→P(Values) Thing

value(T,a,evt)≠∅ evt∈events(T)

value P(Values) value
value(x,a,evt)=∅ a x evt

Thing
π

Thing

Things
Things={T0,T1} value(T0,a,evt)=value(T1,a,evt)

evt∈Events a∈Attributes T0=T1

Things Objects Entities thingOf
Entity Thing

Things Things
Things

Entities Things
Thing

Objects

Objects
events:Objects→P(Events)
value:Objects×Attributes→P(Values)

events(e) e value(e,a) a

value value
Objects Things

Objects Things
Things Objects

Entities⊆Objects Activities
thingOf:Entities→Things Entity e Thing events(e)⊆events(thingOf(e))

evt∈events(e) a value(e,a)⊆value(thingOf(e),a,evt)

file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#things
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#bib-PROV-CONSTRAINTS
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#objects
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#entities

4/23/13 9:07 PMSemantics of the PROV Data Model

Page 6 of 33file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#bib-PROV-DICTIONARY

 and for each attribute we have .

Remark

Although both entities and things can have undefined or multiple attribute values, their meaning is slightly different: for a thing,
 means that the attribute has no value at event , whereas for an entity, only means that the thing

associated to entity need not have a fixed value for during the events of . This does not imply that when
.

Furthermore, all of the attribute values of the entity must be present in the associated thing throughout the events of the entity. For example,
suppose is at some event and at some other event . Then
must be because there is no other set of values that is simultaneously contained in both and .

Remark

In the above description of how relate to , we require whenever . Intuitively, this
means that if we are talking about a indirectly by describing an , then any attributes we ascribe to the must also describe
the associated during their common events. Attributes of both and are multi-valued, so there is no inconsistency in
saying that an entity has two different values for some attribute. In some situations, further uniqueness constraints or range constraints could
be imposed on attributes.

Only are associated with , and this association is necessary to provide an interpretation for the and
relations. It might also make sense to associate , , and with , or with some other structures; however, this is
not necessary to model any of the current features of PROV, so in the interest of simplicity we do not do this.

3.2.1.1 Plans

We identify a specific subset of the entities called plans:

Component 4 (plans)

A set of plans.

3.2.1.2 Collections

We identify another specific subset of the entities called collections, with the following associated structure:

Component 5 (collections)

A set
A membership function mapping each collection to its set of members.

3.2.2 Activities

An activity is an object corresponding to a continuing process rather than an evolving thing. We introduce:

Component 6 (activities)

1. A set of activities.
2. Functions and giving the start and end time of each activity.
3. Activities are disjoint from Entities: .

3.2.3 Agents

An agent is an object that can act, by controlling, starting, ending, or participating in activities. An agent is something that bears some form of
responsibility for an activity taking place, for the existence of an entity, or for another agent's activity. Agents can act on behalf of other agents. An
agent may be a particular type of entity or activity; an agent cannot be both entity and activity because the sets of entities and activities are
disjoint. We introduce:

Component 7 (agents)

A set of agents.

Remark

evt∈events(e) a value(e,a)⊆value(thingOf(e),a,evt)

value(x,a,evt)=∅ a evt value(x,a)=∅
x a x value(thingOf(e),a,evt)=∅

evt∈events(e)

value(thingOf(e),a,evt) {1} evt∈events(e) value(thingOf(e),a,evt′)={2} evt′ value(e,a)
∅ {1} {2}

Entities Things value(e,a)⊆value(thingOf(e),a,evt) evt∈events(e)
Thing Entity Entity

Thing Entities Things

Entities Things alternateOf specializationOf
Agents Activities Interactions Things

Plans⊆Entities

Collections⊆Entities
members:Collections→P(Entities)

Activities⊆Objects
startTime:Activities→Times endTime:Activities→Times

Entities∩Activities=∅

Agents⊆Objects

file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#plans
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#collections
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#activities
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#agents

4/23/13 9:07 PMSemantics of the PROV Data Model

Page 7 of 33file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#bib-PROV-DICTIONARY

There is no requirement that every agent is either an activity or an entity.

3.2.4 Influences

We consider a set which has disjoint subsets connecting entities and activities, between agents and
activities, between entities and agents, between pairs of activities, between pairs of agents, and

 that describe chains of generation and usage steps. These kinds of influences are discussed further below. Influences are disjoint
from entities, activities and agents.

Component 8 (influences)

1. A set
2. The sets , , , and are all pairwise disjoint.
3. Influences are disjoint from entities, agents and activities:
4. An associated function giving the source and target of each influence.

3.2.4.1 Events

An is an instantaneous influence that relates an activity to an entity (either of which could also be an agent). Events have types including
usage, generation, invalidation, starting and ending. Events are instantaneous. We introduce:

Component 9 (events)

1. A set of events, partitioned into disjoint subsets .
2. A function .
3. A quasi-ordering on events . We write when and hold.
4. A function , such that implies .
5. A function , such that implies .
6. A function such that implies .
7. A function such that implies .
8. A function such that implies .

3.2.4.2 Associations

An is an influence relating an agent to an activity and optional plan. To model associations, we introduce:

Component 10 (associations)

A set with associated function .

3.2.4.3 Attributions

An is an influence relating an entity to an agent. To model attributions, we introduce:

Component 11 (attributions)

A set with associated function .

3.2.4.4 Communications

A is an influence indicating exchange of information between activities. To model communications, we introduce:

Component 12 (communications)

A set with associated function .

3.2.4.5 Delegations

A is an influence relating two agents. To model delegations, we introduce:

Component 13 (delegations)

Influences⊆Objects Events Associations
Attributions Communications Delegations

Derivations

Influences=Events∪Associations∪Communications∪Delegations∪Derivations⊆Objects
Events Associations Communications Delegations Derivations

Influences∩(Entities∪Activities∪Agents)=∅
influenced:Influences→Objects×Objects

Event

Events⊆Influences Starts,Ends,Generations,Usages,Invalidations
time:Events→Times

⪯⊂Events×Events e≺e′ e⪯e′ e′⪯̸e
started:Starts→Activities×Entities×Activities started(start)=(a,e,a′) start∈events(a)∩events(e)∩events(a′)
ended:Ends→Activities×Entities×Activities ended(end)=(a,e,a′) end∈events(a)∩events(e)∩events(a′)
used:Usages→Activities×Entities used(use)=(a,e) use∈events(a)∩events(e)
generated:Generations→Entities×Activities generated(gen)=(a,e) gen∈events(a)∩events(e)
invalidated:Invalidations→Entities×Activities invalidated(inv)=(a,e) inv∈events(a)∩events(e)

Association

Associations⊆Influences associatedWith:Associations→Agents×Activities×Plans⊥

Attribution

Attributions⊆Influences attributedTo:Attributions→Entities×Agents

Communication

Communications⊆Influences communicated:Communications→Activities×Activities

Delegation

Delegations⊆Influences actedFor:Delegations→Agents×Agents×Activities

file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#influences
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#events
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#associations
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#attributions
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#communications
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#delegations

4/23/13 9:07 PMSemantics of the PROV Data Model

Page 8 of 33file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#bib-PROV-DICTIONARY

A set and associated function

3.2.4.6 Derivations

A is an influence chaining one or more generation and use steps. To model derivations, we introduce an auxiliary notion of derivation
path. These paths are of the form

where the are entities, are activities, are generations, and are usages.

Formally, we consider the (regular) language:

with the constraints that for each derivation path:

for each substring we have , and
for each substring we have .

Component 14 (derivations)

A set with an associated function linking each derivation to a derivation
path.

Remark

The function links each to a derivation path. A derivation has exactly one associated derivation path. However,
if the PROV-N statement wasDerivedFrom(e_2,e_1,-,-,-) is asserted in an instance, there may be multiple derivation paths linking to ,
each corresponding to a different path, identified by different derivations .

A derivation path implies the existence of at least one chained generation and use step. However, not all such potential derivation paths are
associated with derivations; there can (and in general will) be many such paths that are not associated with derivation steps. In other words,
because we require derivations to be explicitly associated with derivation paths, it is not sound to infer the existence of a derivation from the
existence of an alternating generation/use chain.

The reason why we need paths and not just individual derivation steps is to reflect that formulas can
represent multiple derivation steps. However, there is no way to force a derivation to take multiple steps. Any valid PROV instance has a
model in which all derivation paths are one-step.

3.3 Additional axioms

Above we have stated some properties of the components. We impose some additional properties that relate several components, as follows:

Component 15 (axioms)

1. If and then there exists such that .
2. If then there exist such that and .
3. If then there exists such that .
4. If then there exists such that .
5. If and and there exists such that

 then .
6. If then there exist , and such that and .
7. If then there exist such that and

.
8. If then .
9. If then .

10. If then .
11. If then .
12. If then .
13. If then .
14. If then .
15. If then .
16. If then .
17. If then .
18. If then .
19. If then .
20. If and then .
21. If and then .
22. If then for all .

Delegations⊆Influences actedFor:Delegations→Agents×Agents×Activities

Derivation

entn⋅gn⋅actn⋅un⋅entn−1⋅ ...⋅ent1⋅g1⋅act1⋅u1⋅ent0

enti acti gi ui

DerivationPaths=Entities⋅(Generations⋅Activities⋅Usages⋅Entities)+

ent⋅g⋅act generated(g)=(ent,act)
act⋅u⋅ent used(u)=(act,ent)

Derivations⊆Influences derivationPath:Derivations→DerivationPaths

derivationPath d∈Derivations
e2 e1

d∈Derivations

wasDerivedFrom(id,e2,e1,−,−,−,attrs)

generated(g)=(e,a1) used(u)=(a2,e) c∈Communications communicated(c)=(a2,a1)
e∈Entities gen,inv,a,a′ generated(gen)=(e,a) invalidated(inv)=(e,a′)
started(start)=(a2,e,a1) gen generated(gen)=(e,a1)
ended(end)=(a2,e,a1) gen generated(gen)=(e,a1)
d∈Derivations prov:Revision∈value(d,prov:type) w∈(Generations∪Activities∪Uses∪Entities)∗

derivationPath(deriv)=e2⋅w⋅e1∈DerivationPaths thingOf(e1)=thingOf(e2)
attributedTo(att)=(e,ag) gen assoc a generated(gen)=(e,a) associatedWith(assoc)=(a,ag)
actedFor(deleg)=(ag2,ag1,act) assoc1,assoc2,pl1,pl2 associatedWith(assoc1)=(ag1,act,pl1)

associatedWith(assoc2)=(ag2,act,pl2)
generated(id)=(e,a) influenced(id)=(e,a)
used(id)=(e,a) influenced(id)=(e,a)
communicated(id)=(a2,a1) influenced(id)=(a2,a1)
started(id)=(a2,e,a1) influenced(id)=(a2,e)
ended(id)=(a2,e,a1) influenced(id)=(a2,e)
invalidated(id)=(e,a) influenced(id)=(e,a)
derivationPath(id)=e2⋅w⋅e1 influenced(id)=(e2,e1)
attributedTo(id)=(e,ag) influenced(id)=(e,ag)
associatedWith(id)=(a,ag,pl) influenced(id)=(a,ag)
actedFor(id)=(ag2,ag1) influenced(id)=(ag2,ag1)
generated(gen)=(e,a)=generated(gen′) gen=gen′

invalidated(inv)=(e,a)=invalidated(inv′) inv=inv′

started(st)=(a,e1,a′) started(st′)=(a,e2,a′) st=st′

ended(end)=(a,e1,a′) ended(end′)=(a,e2,a′) end=end′

started(st)=(a,e,a′) st⪯evt evt∈events(a)−Invalidations
ended(end)=(a,e,a′) evt⪯end evt∈events(a)−Invalidations

file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#derivations
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#axioms

4/23/13 9:07 PMSemantics of the PROV Data Model

Page 9 of 33file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#bib-PROV-DICTIONARY

23. If then for all .
24. If then for all .
25. If then for all .
26. For any derivation , with path , if is a substring of where , ,

 and then .
27. For any derivation , with path , if and then

.
28. If and and then .
29. If and and then .
30. If and and then .
31. If and and then .
32. If and and then .
33. If and and then .
34. If and and then .
35. If and and then .
36. If and then and .

These properties are called axioms, and they are needed to ensure that the PROV-CONSTRAINTS inferences and constraints hold in all
structures.

Remark

Axioms 22 and 23 do not require that invalidation events originating from an activity follow the activity's start event(s) or precede its end
event(s). This is because there is no such constraint in PROV-CONSTRAINTS. Arguably, there should be a constraint analogous to
Constraint 34 that specifies that any invalidation event in which an activity participates must follow the activity's start event(s) and precede its
end event(s).

Here, we exempt invalidations from axioms 22 and 23 in order to simplify the proof of weak completeness.

3.4 Putting it all together

A PROV structure is a collection of sets, functions, and relations containing all of the above described components and satisfying all of the
associated properties and axioms. If we need to talk about the objects or relations of more than one structure then we may write ,

, etc.; otherwise, to decrease notational clutter, when we consider a fixed structure then the names of the sets, relations and functions
above refer to the components of that model.

Some features of PROV structures are relatively obvious or routine, corresponding directly to features of PROV and associated inferences. For
example, the functions mapping events to their associated entities or activities, and

 associating other types of influences with appropriate data.

On the other hand, some features are more distinctive, and represent areas where formal modeling has been used to guide the development of
PROV. Derivation paths are one such distinctive feature; they correspond to an intuition that derivations may describe one or multiple generation-
use steps leading from one entity to another. Another distinctive feature is the use of , which correspond to changing, real-world things, as
opposed to , which correspond to limited views or perspectives on , with some fixed aspects. The semantic structures of and

 provide a foundation for the and relations.

3.5 Interpretations

We need to link identifiers to the objects they denote. We do this using a function which we shall call an interpretation. An interpretation is a
function describing which object is the target of each identifier. The mapping from identifiers to objects may not change over
time; only can be denoted by .

4. Semantics
In what follows, let be a fixed structure with the associated sets and relations discussed in the previous section, and let be an interpretation
of identifiers as objects in . The annotations [WF] refer to well-formedness constraints that correspond to typing constraints.

4.1 Satisfaction

Consider a formula , a structure and an interpretation . We define notation which means that is satisfied in . For atomic
formulas, the definition of the satisfaction relation is given in the next few subsections. We give the standard definition of the semantics of the
other formulas:

Semantics 16 (first-order-logic-semantics)

1. always holds.
2. never holds.
3. holds if and only if .
4. holds if and only if does not hold.
5. holds if and only if and .
6. holds if either or .
7. holds if implies .
8. holds if there exists some such that .
9. holds if there for every we have .

ended(end)=(a,e,a′) evt⪯end evt∈events(a)−Invalidations
generated(gen)=(e,a) gen⪯evt evt∈events(e)
invalidated(inv)=(e,a) evt⪯inv evt∈events(e)

deriv derivationPath(deriv)=w e2⋅g⋅a⋅u⋅e1 w e1,e2∈Entities g∈Generations
u∈Usages a∈Activities u⪯g

deriv derivationPath(deriv)=e2⋅w⋅e1 generated(gen1)=(e1,a1) generated(gen2)=(e2,a2)
gen1≺gen2

associatedWith(assoc)=(a,ag,pl) started(start)=(a,e1,a1) invalidated(inv)=(ag,a2) start⪯ inv
associatedWith(assoc)=(a,ag,pl) generated(gen)=(ag,a1) ended(end)=(a,e2,a2) gen⪯end
associatedWith(assoc)=(a,ag,pl) started(start)=(a,e1,a1) ended(end)=(ag,e2,a2) start⪯end
associatedWith(assoc)=(a,ag,pl) started(start)=(ag,e1,a1) ended(end)=(a,e2,a2) start⪯end
attributedTo(attrib)=(e,ag) generated(gen1)=(ag1,a1) generated(gen2)=(e,a2) gen1⪯gen2
attributedTo(attrib)=(e,ag) started(start)=(ag1,e1,a1) generated(gen)=(e,a2) start⪯gen
actedFor(deleg)=(ag2,ag1,a) generated(gen)=(ag1,a1) invalidated(inv)=(ag2,a2) gen⪯inv
actedFor(deleg)=(ag2,ag1,a) started(start)=(ag1,e1,a1) ended(end)=(ag2,e2,a2) start⪯end
e∈Entity prov:emptyCollection∈value(e,prov:type) e∈Collections members(e)=∅

W
W1.Objects

W1.Things

used,generated,invalidated,started,ended
communicated,associatedWith,attributedTo,actedFor

Things
Entities Things Things

Entities alternateOf specializationOf

ρ:Identifiers→Objects
Objects Identifiers

W ρ
W

ϕ W ρ W,ρ⊨ϕ ϕ W,ρ

W,ρ⊨True
W,ρ⊨False
W,ρ⊨x=y ρ(x)=ρ(y)
W,ρ⊨¬ϕ W,ρ⊨ϕ
W,ρ⊨ϕ∧ψ W,ρ⊨ϕ W,ρ⊨ψ
W,ρ⊨ϕ∨ψ W,ρ⊨ϕ W,ρ⊨ψ
W,ρ⊨ϕ⇒ψ W,ρ⊨ϕ W,ρ⊨ψ
W,ρ⊨∃x.ϕ obj∈Objects W,ρ[x:=obj]⊨ϕ
W,ρ⊨∀x.ϕ obj∈Objects W,ρ[x:=obj]⊨ϕ

file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#first-order-logic-semantics

4/23/13 9:07 PMSemantics of the PROV Data Model

Page 10 of 33file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#bib-PROV-DICTIONARY

Remark

In the semantics above, note that the domain of quantification is the set of ; that is, quantifiers range over entities, activities, agents,
or influences (which are in turn further subdivided into types of influences). and relations cannot be referenced directly by identifiers.

Remark

A PROV instance consists of a set of statements, each of which can be translated to an atomic formula following the definitional rules in
PROV-CONSTRAINTS, possibly by introducing fresh existential variables. Thus, we can view an instance as a set of atomic formulas

, or equivalently a single formula , where are the existential variables of .

4.2 Attribute matching

We say that an object matches attributes in structure provided: for each attribute , we have . This
is sometimes abbreviated as: .

4.3 Semantics of Element Formulas

4.3.1 Entity

An entity formula is of the form where denotes an entity.

Entity formulas can be interpreted as follows:

Semantics 17 (entity-semantics)

 holds if and only if:

1. [WF] denotes an entity .
2. the attributes match: .

Remark

Not all of the attributes of an entity object are required to be present in an entity formula about that object. For example, the following
formulas all hold if denotes an entity such that hold:

 entity(x,[])
 entity(x,[a=5])
 entity(x,[a=4,a=5])
 entity(x,[a=4,b=6])

Note that PROV-CONSTRAINTS normalization will merge these formulas to a single one:

 entity(x,[a=4,a=5,b=6])

4.3.2 Activity

An activity formula is of the form where is a identifier referring to the activity, is a start time and is an end time, and
 are the attributes of activity .

Semantics 18 (activity-semantics)

 holds if and only if:

1. [WF] The identifier maps to an activity .
2. is the activity's start time, that is: .
3. is the activity's end time, that is: .
4. There exists such that , and for all such start events $startTime(act) = time(start).
5. There exists such that , and for all such end events .
6. The attributes match: .

Remark

The above definition is complicated for two reasons. First, we need to ensure that every activity has a start and end event. Second, when an
 formula is asserted, we need to make sure all of the associated start and end event times match.

4.3.3 Agent

Objects
Things

I
I

{ϕ1,…,ϕn} ∃x1,…,xk. ϕ1∧⋯∧ϕn x1,…,xk I

obj [attr1=val1,...] W attri vali∈W.value(obj,attri)
match(W,obj,attrs)

entity(id,attrs) id

entity(id,attrs)

W,ρ⊨entity(id,attrs)

id ent=ρ(id)∈Entities
match(W,ent,attrs)

x e value(e,a)={4,5},value(e,b)={6}

activity(id,st,et,attrs) id st et
attrs id

W,ρ⊨activity(id,st,et,attrs)

id act=ρ(id)∈Activities
ρ(st)∈Times startTime(act)=ρ(st)
ρ(et) endTime(act)=ρ(et)

start,e,a started(start)=(act,e,a)
end,e′,a′ ended(end)=(act,e′,a′) endTime(act)=time(end)

match(W,act,attrs)

activity

agent(id,attrs) id attrs

file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#entity-semantics
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#activity-semantics

4/23/13 9:07 PMSemantics of the PROV Data Model

Page 11 of 33file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#bib-PROV-DICTIONARY

An agent formula is of the form where denotes the agent and describes additional attributes.

Semantics 19 (agent-semantics)

 holds if and only if:

1. [WF] denotes an agent .
2. The attributes match: .

4.4 Semantics of Relations

4.4.1 Generation

The generation formula is of the form where is an event identifier, is an entity identifier, is an activity
identifier, is a set of attribute-value pairs, and is a time.

Semantics 20 (generation-semantics)

 holds if and only if:

1. [WF] The identifier denotes a generation event .
2. [WF] The identifier denotes an entity .
3. [WF] The identifier denotes an activity .
4. The event occurred at time , i.e. .
5. The activity generated via , i.e. .
6. The attribute values match: .

4.4.2 Use

The use formula is of the form where denotes an event, is an activity identifier, is an object identifier, is a set of
attribute-value pairs, and is a time.

Semantics 21 (usage-semantics)

 holds if and only if:

1. [WF] The identifier denotes a usage event .
2. [WF] The identifier denotes an activity .
3. [WF] The identifier denotes an entity .
4. The event occurred at time , i.e. .
5. The activity used via , i.e. .
6. The attribute values match: .

4.4.3 Invalidation

The invalidation formula is of the form where is an event identifier, is an entity identifier, is an activity
identifier, is a set of attribute-value pairs, and is a time.

Semantics 22 (invalidation-semantics)

An invalidation formula holds if and only if:

1. [WF] The identifier denotes an invalidation event .
2. [WF] The identifier denotes an entity .
3. [WF] The identifier denotes an activity .
4. The event occurred at time , i.e. .
5. The activity invalidated via , i.e. .
6. The attribute values match: .

4.4.4 Association

An association formula has the form .

Semantics 23 (association-plan-semantics)

 holds if and only if:

1. [WF] denotes an association .
2. [WF] denotes an activity .
3. [WF] denotes an agent .

agent(id,attrs) id attrs

W,ρ⊨agent(id,attrs)

id ag=ρ(id)∈Agents
match(W,ag,attrs)

wasGeneratedBy(id,e,a,t,attrs) id e a
attrs t

W,ρ⊨wasGeneratedBy(id,e,a,t,attrs)

id evt=ρ(id)∈Generations
e ent=ρ(e)∈Entities
a act=ρ(a)∈Activities

evt ρ(t)∈Times time(evt)=ρ(t)
act ent evt generated(evt)=(ent,act)

match(W,evt,attrs)

used(id,a,e,t,attrs) id a e attrs
t

W,ρ⊨used(id,a,e,t,attrs)

id evt=ρ(id)∈Usages
a act=ρ(id)∈Activities
e ent=ρ(e)∈Entities

evt ρ(t)∈Times time(evt)=ρ(t)
act obj evt used(evt)=(act,ent)

match(W,evt,attrs)

wasInvalidatedBy(id,e,a,t,attrs) id e a
attrs t

W,ρ⊨wasInvalidatedBy(id,e,a,t,attrs)

id evt=ρ(id)∈Invalidations
e ent=ρ(e)∈Entities
a act=ρ(a)∈Activities

evt ρ(t)∈Times time(evt)=ρ(t)
act ent evt invalidated(evt)=(ent,act)

match(W,evt,attrs)

wasAssociatedWith(id,a,ag,pl,attrs)

W,ρ⊨wasAssociatedWith(id,a,ag,pl,attrs)

assoc assoc=ρ(id)∈Associations
a act=ρ(a)∈Activities
ag agent=ρ(ag)∈Agents
pl plan=ρ(pl)∈Plans

file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#agent-semantics
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#generation-semantics
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#usage-semantics
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#invalidation-semantics
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#association-plan-semantics

4/23/13 9:07 PMSemantics of the PROV Data Model

Page 12 of 33file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#bib-PROV-DICTIONARY

4. [WF] denotes a plan .
5. The association associates the agent with the activity and plan, i.e. .
6. The attributes match: .

Semantics 24 (assocation-semantics)

 holds if and only if:

1. [WF] denotes an association .
2. [WF] denotes an activity .
3. [WF] denotes an agent .
4. The association associates the agent with the activity and no plan, i.e. .
5. The attributes match: .

4.4.5 Start

A start formula is interpreted as follows:

Semantics 25 (start-semantics)

 holds if and only if:

1. [WF] denotes a start event .
2. [WF] denotes an activity .
3. [WF] denotes an entity .
4. [WF] denotes an activity .
5. The event happened at time , that is, .
6. The activity started via entity : that is, .
7. The attributes match: .

4.4.6 End

An activity end formula is interpreted as follows:

Semantics 26 (end-semantics)

 holds if and only if:

1. [WF] denotes an end event .
2. [WF] denotes an activity .
3. [WF] denotes an entity .
4. [WF] denotes an activity .
5. The event happened at the end of , that is, .
6. The activity ended via entity : that is, .
7. The attributes match: .

4.4.7 Attribution

An attribution formula is interpreted as follows:

Semantics 27 (attribution-semantics)

 holds if and only if:

1. [WF] denotes an association .
2. [WF] denotes an entity .
3. [WF] denotes an agent .
4. The entity was attributed to the agent, i.e. .
5. The attributes match: .

4.4.8 Communication

A communication formula is interpreted as follows:

Semantics 28 (communication-semantics)

 holds if and only if:

pl plan=ρ(pl)∈Plans
associatedWith(assoc)=(agent,act,plan)

match(W,assoc,attrs)

W,ρ⊨wasAssociatedWith(id,a,ag,−,attrs)

assoc assoc=ρ(id)∈Associations
a act=ρ(a)∈Activities
ag agent=ρ(ag)∈Agents

associatedWith(assoc)=(agent,act,⊥)
match(W,assoc,attrs)

wasStartedBy(id,a2,e,a1,t,attrs)

W,ρ⊨wasStartedBy(id,a2,e,a1,t,attrs)

id evt=ρ(id)∈Starts
a2 act2=ρ(a2)∈Activities
e ent=ρ(e)∈Entities
a1 act1=ρ(a1)∈Activities

t ρ(t)==time(evt)
act1 act2 ent started(evt)=(act2,ent,act1)

match(W,evt,attrs)

wasEndedBy(id,a2,e,a1,t,attrs)

W,ρ⊨wasEndedBy(id,a2,e,a1,t,attrs)

id evt=ρ(id)∈Ends
a2 act2=ρ(a2)∈Activities
e ent=ρ(e)∈Entities
a1 act1=ρ(a1)∈Activities

act2 ρ(t)=endTime(act2)=time(evt)
act1 act2 ent ended(evt)=(act2,ent,act1)

match(W,evt,attrs)

wasAttributedTo(id,e,ag,attrs)

W,ρ⊨wasAttributedTo(id,e,ag,attrs)

id assoc=ρ(id)∈Associations
e ent=ρ(e)∈Entities
ag agent=ρ(ag)∈Agents

attributedTo(assoc)=(ent,agent)
match(W,assoc,attrs)

wasInformedBy(id,a2,a2,attrs)

W,ρ⊨wasInformedBy(id,a2,a1,attrs)
id comm=ρ(id)∈Communications

file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#assocation-semantics
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#start-semantics
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#end-semantics
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#attribution-semantics
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#communication-semantics

4/23/13 9:07 PMSemantics of the PROV Data Model

Page 13 of 33file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#bib-PROV-DICTIONARY

1. [WF] denotes a communication .
2. [WF] denote activities .
3. There exist such that and and .
4. The attributes match: .

4.4.9 Delegation

The relation is interpreted as follows:

Semantics 29 (delegation-semantics)

 holds if and only if:

1. [WF] denotes a delegation .
2. [WF] denotes an activity .
3. [WF] denote agents .
4. The agent acted for the agent with respect to the activity , i.e. .
5. The attributes match: .

4.4.10 Derivation

Derivation formulas can be of one of two forms:

, which specifies an activity, generation and usage event. For convenience we call this a precise
derivation.
and , which does not specify an activity, generation and usage event. For convenience we call this an
imprecise derivation.

4.4.10.1 Precise

A precise derivation formula has the form .

Semantics 30 (derivation-precise-semantics)

 holds if and only if:

1. [WF] denotes a derivation .
2. [WF] denote entities .
3. [WF] denotes an activity .
4. [WF] denotes a generation event .
5. [WF] denotes a use event .
6. The derivation denotes a one-step derivation path linking the entities via the activity, generation and use:

.
7. The attribute values match: .

4.4.10.2 Imprecise

An imprecise derivation formula has the form .

Semantics 31 (derivation-imprecise-semantics)

 holds if and only if:

1. [WF] denotes a derivation .
2. [WF] denote entities .
3. for some .
4. The attribute values match: .

4.4.11 Influence

Semantics 32 (influence-semantics)

 holds if and only if at least one of the following hold:

1. [WF] denotes an influence .
2. [WF] and denote objects and .
3. The influence links with ; that is, .

id comm=ρ(id)∈Communications
a1,a2 act1=ρ(a1)∈Activities,act2=ρ(a2)∈Activities

gen,use,ent communicated(comm)=(act2,act1) generated(gen)=(ent,act1) used(use)=(act2,ent)
match(W,comm,attrs)

actedOnBehalfOf(id,ag2,ag1,act,attrs)

W,ρ⊨actedOnBehalfOf(id,ag2,ag1,act,attrs)

id deleg=ρ(id)∈Delegations
a act=ρ(a)∈Activities
ag1,ag2 agent1=ρ(ag1),agent2=ρ(ag2)∈Agents

agent2 agent1 act actedFor(deleg)=(agent2,agent1,act)
match(W,deleg,attrs)

wasDerivedFrom(id,e2,e1,a,g,u,attrs)

wasDerivedFrom(id,e2,e1,−,−,−,attrs)

wasDerivedFrom(id,e2,e1,a,g,u,attrs)

W,ρ⊨wasDerivedFrom(id,e2,e1,act,g,u,attrs)

id deriv=ρ(id)∈Derivations
e1,e2 ent1=ρ(e1),ent2=ρ(e2)∈Entities
a act=ρ(a)∈Activities
g gen=ρ(g)∈Generations
u use=ρ(u)∈Usages

derivationPath(deriv)=ent2⋅gen⋅act⋅use⋅ent1
match(W,deriv,attrs)

wasDerivedFrom(id,e2,e1,−,−,−,attrs)

W,ρ⊨wasDerivedFrom(id,e2,e1,−,−,−,attrs)

id deriv=ρ(id)∈Derivations
e1,e2 ent1=ρ(e1),ent2=ρ(e2)∈Entities

derivationPath(deriv)=ent2⋅w⋅ent1 w
match(W,deriv,attrs)

W,ρ⊨wasInfluencedBy(id,o2,o1,attrs)

id inf=ρ(id)∈Influences
o1 o2 obj1=ρ(o1)∈Objects obj2=ρ(o2)∈Objects

inf o2 o1 influenced(inf)=(o2,o1)
match(W,deriv,attrs)

file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#delegation-semantics
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#derivation-precise-semantics
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#derivation-imprecise-semantics
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#influence-semantics

4/23/13 9:07 PMSemantics of the PROV Data Model

Page 14 of 33file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#bib-PROV-DICTIONARY

4. The attribute values match: .

4.4.12 Specialization

The relation indicates when one entity formula presents more specific aspects of another.

Semantics 33 (specialization-semantics)

 holds if and only if:

1. [WF] Both and are entity identifiers, denoting entities and .
2. The two entities present aspects of the same thing, that is, .
3. The events of are contained in those of , i.e. .
4. For each attribute we have .
5. At least one of these inclusions is strict: that is, either or for some we have .

Remark

The second criterion says that the two Entities present (possibly different) aspects of the same Thing. Note that the third criterion allows
and to have the same events (or can be larger). The last criterion allows to have more defined attributes than , but
they must include the attributes defined by . Two different entities that have the same attributes can also be related by specialization.
The fifth criterion (indirectly) ensures that specialization is irreflexive.

4.4.13 Alternate

The relation indicates when two entity formulas present (possibly different) aspects of the same thing. The two entities may or may not
overlap in time.

Semantics 34 (alternate-semantics)

 holds if and only if:

1. [WF] Both and are entity identifiers, denoting and .
2. The two objects refer to the same underlying Thing:

4.4.14 Membership

The relation relates a collection to an element of the collection.

Semantics 35 (membership-semantics)

 holds if and only if:

1. [WF] Both and are entity identifiers, denoting and .
2. The entity is a member of the collection : that is, .

4.5 Semantics of Auxiliary Formulas

In this section, we define the semantics of additional formulas concerning ordering, null values, and typing. These are used in the logical versions
of constraints.

4.5.1 Precedes and Strictly Precedes

The precedes relation holds between two events, one taking place before (or simultaneously with) another. Its meaning is defined in
terms of the quasiordering on events specified by . The semantics of strictly precedes () is similar, only must take place
strictly before . It is interpreted as , which we recall is defined from as .

Semantics 36 (precedes-semantics)

1. holds if and only if and .
2. holds if and only if and .

Remark

The ordering of time values associated to events is unrelated to the event ordering. For example:

match(W,deriv,attrs)

specializationOf(e1,e2)

W,ρ⊨specializationOf(e1,e2)

e1 e2 ent1=ρ(e1)∈Entities ent2=ρ(e2)∈Entities
thingOf(ent1)=thingOf(ent2)

ent1 ent2 events(ent1)⊆events(ent2)
attr value(ent1,attr)⊇value(ent2,attr)

events(ent1)⊊events(ent2) attr value(ent1,attr)⊋value(ent2,attr)

ent1
ent2 events(ent2) ent1 ent2

ent2

alternateOf

W,ρ⊨alternateOf(e1,e2)

e1 e2 ent1=ρ(e1) ent2=ρ(e2)
thingOf(ent1)=thingOf(ent2)

hadMember

W,ρ⊨hadMember(c,e)

e1 e2 coll=ρ(c)∈Collections ent=ρ(e)∈Entities
ent coll ent∈members(coll)

x precedes y
⪯ x strictlyPrecedes y x

y ≺ ⪯ x≺y⟺x⪯y and y⪯̸x

W,ρ⊨x precedes y ρ(x),ρ(y)∈Events ρ(x)⪯ρ(y)
W,ρ⊨x strictlyPrecedes y ρ(x),ρ(y)∈Events ρ(x)≺ρ(y)

file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#specialization-semantics
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#alternate-semantics
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#membership-semantics
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#precedes-semantics

4/23/13 9:07 PMSemantics of the PROV Data Model

Page 15 of 33file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#bib-PROV-DICTIONARY

entity(e)
activity(a1)
activity(a2)
wasGeneratedBy(gen1; e, a1, 2011-11-16T16:05:00)
wasGeneratedBy(gen2; e, a2, 2012-11-16T16:05:00) //different date

This instance is valid, and must satisfy precedence constraints and , but this does not imply anything
about the relative orderings of the associated times, or vice versa.

4.5.2 notNull

The formula is used to specify that a value may not be the null value . The symbol " " always denotes the null value (i.e.).

Semantics 37 (notNull-semantics)

 holds if and only if .

4.5.3 typeOf

The typing formula constrains the type of the value of .

Semantics 38 (typeOf-semantics)

1. holds if and only if .
2. holds if and only if .
3. holds if and only if .
4. holds if and only if .
5. holds if and only if and .

5. Inferences and Constraints
In this section we restate all of the inferences and constraints of PROV-CONSTRAINTS in terms of first-order logic. For each, we give a proof
sketch showing why the inference or constraint is sound for reasoning about the semantics. We exclude the definitional rules in PROV-
CONSTRAINTS because they are only needed for expanding the abbreviated forms of PROV-N statements to the logical formulas used here.

5.1 Inferences

Inference 5 (communication-generation-use-inference)

Proof

This follows immediately from the semantics of .

QED

Inference 6 (generation-use-communication-inference)

Proof

This follows from the semantics of and Axiom 1.

QED

Inference 7 (entity-generation-invalidation-inference)

Proof

This follows from Axiom 2, which requires that generation and invalidation events exist for each entity.

gen1 precedes gen2 gen2 precedes gen1

notNull(x) ⊥ − ρ(−)=⊥

W,ρ⊨notNull(e) ρ(e)≠⊥

typeOf(x,t) x

W,ρ⊨ typeOf(e,entity) ρ(e)∈Entities
W,ρ⊨ typeOf(a,activity) ρ(a)∈Activities
W,ρ⊨ typeOf(ag,agent) ρ(ag)∈Agents
W,ρ⊨ typeOf(c,Collection) ρ(c)∈Collections
W,ρ⊨ typeOf(c,EmptyCollection) ρ(c)∈Collections members(ρ(c)=∅

∀id,a2,a1,attrs.
wasInformedBy(id,a2,a1,attrs)
⇒∃e,gen,t1,use,t2. wasGeneratedBy(gen,e,a1,t1,[])∧used(use,a2,e,t2,[])

wasInformedBy

∀gen,e,a1,t1,attrs1,use,a2,t2,attrs2.
wasGeneratedBy(gen,e,a1,t1,attrs1)∧used(use,a2,e,t2,attrs2)
⇒∃id. wasInformedBy(id,a2,a1,[])

wasInformedBy

∀e,attrs.
entity(e,attrs)
⇒∃gen,a1,t1,inv,a2,t2. wasGeneratedBy(gen,e,a1,t1,[])∧wasInvalidatedBy(inv,e,a2,t2,[])

file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#notNull-semantics
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#typeOf-semantics
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#communication-generation-use-inference
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#generation-use-communication-inference
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#axiom1
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#entity-generation-invalidation-inference
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#axiom2

4/23/13 9:07 PMSemantics of the PROV Data Model

Page 16 of 33file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#bib-PROV-DICTIONARY

QED

Inference 8 (activity-start-end-inference)

Proof

This follows from the semantics of activity formulas, specifically the requirement that start and end events exist for the activity.

QED

Inference 9 (wasStartedBy-inference)

Proof

This follows from Axiom 3.

QED

Inference 10 (wasEndedBy-inference)

Proof

This follows from Axiom 4.

QED

Inference 11 (derivation-generation-use-inference)

Proof

This follows from the semantics of precise derivation steps.

QED

Inference 12 (revision-is-alternate-inference)

Proof

This follows from the semantics of derivation steps (precise or imprecise) and Axiom 5.

QED

Inference 13 (attribution-inference)

Proof

This follows from the semantics of generation, association, and attribution, by Axiom 6.

∀a,t1,t2,attrs.
activity(a,t1,t2,attrs)
⇒∃start,e1,a1,end,a2,e2. wasStartedBy(start,a,e1,a1,t1,[])∧wasEndedBy(end,a,e2,a2,t2,[])

∀id,a,e1,a1,t,attrs.
wasStartedBy(id,a,e1,a1,t,attrs)
⇒∃gen,t1. wasGeneratedBy(gen,e1,a1,t1,[])

∀id,a,e1,a1,t,attrs.
wasEndedBy(id,a,e1,a1,t,attrs)
⇒∃gen,t1. wasGeneratedBy(gen,e1,a1,t1,[])

∀id,e2,e1,a,gen2,use1,attrs.
notNull(a)∧notNull(gen2)∧notNull(use1)∧wasDerivedFrom(id,e2,e1,a,gen2,use1,attrs)
⇒∃t1,t2. used(use1,a,e1,t1,[])∧wasGeneratedBy(gen2,e2,a,t2,[])

∀id,e1,e2,a,g,u.
wasDerivedFrom(id,e2,e1,a,g,u,[prov:type=prov:Revision]))
⇒alternateOf(e2,e1)

∀att,e,ag,attrs.
wasAttributedTo(att,e,ag,attrs)
⇒∃a,t,gen,assoc,pl. wasGeneratedBy(gen,e,a,t,[])∧wasAssociatedWith(assoc,a,ag,pl,[])

file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#activity-start-end-inference
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#wasStartedBy-inference
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#axiom3
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#wasEndedBy-inference
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#axiom4
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#derivation-generation-use-inference
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#revision-is-alternate-inference
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#axiom5
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#attribution-inference
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#axiom6

4/23/13 9:07 PMSemantics of the PROV Data Model

Page 17 of 33file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#bib-PROV-DICTIONARY

QED

Inference 14 (delegation-inference)

Proof

This follows from the semantics of association and delegation, by Axiom 7.

QED

Inference 15 (influence-inference)

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Proof

This follows via Axioms 8 through 17.

QED

Inference 16 (alternate-reflexive)

Proof

Suppose . Clearly and , so .

QED

∀id,ag1,ag2,a,attrs.
actedOnBehalfOf(id,ag1,ag2,a,attrs)
⇒∃id1,pl1,id2,pl2. wasAssociatedWith(id1,a,ag1,pl1,[])∧wasAssociatedWith(id2,a,ag2,pl2,[])

∀id,e,a,t,attrs.
wasGeneratedBy(id,e,a,t,attrs)
⇒wasInfluencedBy(id,e,a,attrs)

∀id,a,e,t,attrs.
used(id,a,e,t,attrs)
⇒wasInfluencedBy(id,a,e,attrs)

∀id,a2,a1,attrs.
wasInformedBy(id,a2,a1,attrs)
⇒wasInfluencedBy(id,a2,a1,attrs)

∀id,a2,e,a1,t,attrs.
wasStartedBy(id,a2,e,a1,t,attrs)
⇒wasInfluencedBy(id,a2,e,attrs)

∀id,a2,e,a1,t,attrs.
wasEndedBy(id,a2,e,a1,t,attrs)
⇒wasInfluencedBy(id,a2,e,attrs)

∀id,e,a,t,attrs.
wasInvalidatedBy(id,e,a,t,attrs)
⇒wasInfluencedBy(id,e,a,attrs)

∀id,e2,e1,a,g,u,attrs.
wasDerivedFrom(id,e2,e1,a,g,u,attrs)
⇒wasInfluencedBy(id,e2,e1,attrs)

∀id,e,ag,attrs.
wasAttributedTo(id,e,ag,attrs)
⇒wasInfluencedBy(id,e,ag,attrs)

∀id,a,ag,pl,attrs.
wasAssociatedWith(id,a,ag,pl,attrs)
⇒wasInfluencedBy(id,a,ag,attrs)

∀id,ag2,ag1,a,attrs.
actedOnBehalfOf(id,ag2,ag1,a,attrs)
⇒wasInfluencedBy(id,ag2,ag1,attrs)

∀e.
entity(e)
⇒alternateOf(e,e)

ent=ρ(e) ent∈Entities thingOf(ent)= thingOf(ent) W,ρ⊨alternateOf(e,e)

file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#delegation-inference
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#axiom7
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#influence-inference
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#axiom8
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#axiom17
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#alternate-reflexive

4/23/13 9:07 PMSemantics of the PROV Data Model

Page 18 of 33file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#bib-PROV-DICTIONARY

Inference 17 (alternate-transitive)

Proof

Suppose and and . Then by assumption , , and are in and and
, so , as required to conclude .

QED

Inference 18 (alternate-symmetric)

Proof

Suppose and . Then by assumption both and are in and , as required to
conclude .

QED

Inference 19 (specialization-transitive)

Proof

Suppose the conditions for specialization hold of and and for and , where and and . Then
. Moreover, , and similarly so

. Finally, at least one of the inclusions between and is strict, so the same is the case for and
.

QED

Inference 20 (specialization-alternate-inference)

Proof

If and are specializations, then .

QED

Inference 21 (specialization-attributes-inference)

Proof

Suppose and . Suppose is an attribute-value pair in . Since holds, we know that
. Thus since . Since this is the case for all attribute-value pairs in , and

since obviously denotes an entity, we can conclude .

QED

5.2 Constraints

5.2.1 Uniqueness constraints

∀e1,e2,e3.
alternateOf(e1,e2)∧alternateOf(e2,e3)
⇒alternateOf(e1,e3)

ent1=ρ(e1) ent2=ρ(e2) ent3=ρ(e3) ent1 ent2 ent3 Entities thingOf(e1)=thingOf(e2)
thingOf(e2)=thingOf(e3) thingOf(e1)=thingOf(e3) W,ρ⊨alternateOf(e1,e3)

∀e1,e2.
alternateOf(e1,e2)
⇒alternateOf(e2,e1)

ent1=ρ(e1) ent2=ρ(e2) ent1 ent2 Entities thingOf(e1)=thingOf(e2)
W,ρ⊨alternateOf(e2,e1)

∀e1,e2,e3.
specializationOf(e1,e2)∧specializationOf(e2,e3)
⇒specializationOf(e1,e3)

ent1 ent2 ent2 ent3 ent1=ρ(e1) ent2=ρ(e2) ent3=ρ(e3)
events(e1)⊆events(e2)⊆events(e3) value(obj2,attr)⊇value(obj3,attr) value(obj1,attr)⊇value(obj2,attr)
value(obj1,attr)⊇value(obj3,attr) obj1 obj2 obj1
obj3

∀e1,e2.
specializationOf(e1,e2)
⇒alternateOf(e1,e2)

ent1=ρ(e1) ent2=ρ(e2) thingOf(ent1)=thingOf(ent2)

∀e1,attrs,e2.
entity(e1,attrs)∧specializationOf(e2,e1)
⇒entity(e2,attrs)

ent1=ρ(e1) ent2=ρ(e2) (att,v) attrs entity(e1,attrs)
v∈value(ent1,att) v∈value(ent2,att) value(ent2,att)⊇value(ent1,att) attrs

e2 W,ρ⊨entity(e2,attrs)

file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#alternate-transitive
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#alternate-symmetric
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#specialization-transitive
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#specialization-alternate-inference
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#specialization-attributes-inference

4/23/13 9:07 PMSemantics of the PROV Data Model

Page 19 of 33file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#bib-PROV-DICTIONARY

Constraint 22 (key-object)

1.

2.

3.
.

Proof

These properties follow immediately from the definitions of the semantics of the respective assertions, because functions are used for the
underlying data.

QED

Constraint 23 (key-properties)

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

Proof

∀id,attrs1,attrs2.entity(id,attrs1)∧entity(id,attrs2)⇒entity(id,attrs1∪attrs2)

∀id,t1,t ′
1,t2,t ′

2,attrs1,attrs2. activity(id,t1,t2,attrs1)∧activity(id,t ′
1,t ′

2,attrs2)⇒activity(id,t1,t2,attrs1∪attrs2)∧t1=t ′
1∧t2=t ′

2

∀id,attrs1,attrs2.agent(id,attrs1)∧agent(id,attrs2)⇒agent(id,attrs1∪attrs2)

∀id,e,e′,a,a′,t,t′,attrs1,attrs2.
wasGeneratedBy(id,e,a,t,attrs)∧wasGeneratedBy(id,e′,a′,t′,attrs2)
⇒wasGeneratedBy(id,e,a,t,attrs1∪attrs2)∧e=e′∧a=a′∧t=t′

∀id,e,e′,a,a′,t,t′,attrs1,attrs2.
used(id,a,e,t,attrs)∧used(id,a′,e′,t′,attrs2)
⇒used(id,a,e′,t,attrs1∪attrs2)∧e=e′∧a=a′∧t=t′

∀id,a1,a2,a ′
1,a ′

2,attrs1,attrs2.
wasInformedBy(id,a1,a2,attrs)∧wasInformedBy(id,a ′

1,a ′
2,attrs2)

⇒wasInformedBy(id,a1,a2,attrs1∪attrs2)∧a1=a ′
1∧a2=a ′

2

∀id,e,e′a1,a2,a ′
1,a ′

2,t,t′,attrs1,attrs2.
wasStartedBy(id,a2,e,a1,t,attrs1)∧wasStartedBy(id,a ′

2,e′,a ′
1,t′,attrs2)

⇒wasStartedBy(id,a2,e,a1,t,attrs1∪attrs2)∧a1=a ′
1∧e=e′∧a2=a ′

2∧t=t′

∀id,e,e′a1,a2,a ′
1,a ′

2,t,t′,attrs1,attrs2.
wasEndedBy(id,a2,e,a1,t,attrs1)∧wasEndedBy(id,a ′

2,e′,a ′
1,t′,attrs2)

⇒wasEndedBy(id,a2,e,a1,t,attrs1∪attrs2)∧a1=a ′
1∧e=e′∧a2=a ′

2∧t=t′

∀id,e,e′,a,a′,t,t′,attrs1,attrs2.
wasInvalidatedBy(id,e,a,t,attrs1)∧wasInvalidatedBy(id,e′,a′,t′,attrs2)
⇒wasInvalidatedBy(id,e,a,t,attrs1∪attrs2)∧e=e′∧a=a′∧t=t′

∀id,e1,e ′
1,e2,e ′

2,a,a′,g,g′,u,u′,attrs1,attrs2.
wasDerivedFrom(id,e2,e1,a,g2,u1,attrs1)∧wasDerivedFrom(id,e ′

2,e ′
1,a′,g′

2,u′
1,attrs2)

⇒wasDerivedFrom(id,e2,e1,a,g2,u1,attrs1∪attrs2)∧e1=e ′
1∧e2=e ′

2∧a=a′∧g=g′∧u=u′

∀id,e,e′,ag,ag′,attrs1,attrs2.
wasAttributedTo(id,e,ag,attrs1)∧wasAttributedTo(id,e′,ag′,attrs2)
⇒wasAttributedTo(id,e,ag,attrs1∪attrs2)∧e=e′∧ag=ag′

∀id,a,a′,ag,ag′,pl,pl′,attrs1,attrs2.
wasAssociatedWith(id,a,ag,pl,attrs1)∧wasAssociatedWith(id,a′,ag′,pl′,attrs2)
⇒wasAssociatedWith(id,a,ag,pl,attrs1∪attrs2)∧a=a′∧ag=ag′∧pl=pl′

∀id,ag1,ag′
1,ag2,ag′

2,a,a′,attrs1,attrs2.
actedOnBehalfOf(id,ag2,ag1,a,attrs1)∧actedOnBehalfOf(id,ag′

2,ag′
1,a′,attrs2)

⇒actedOnBehalfOf(id,ag2,ag1,a,attrs1∪attrs2)∧ag1=ag′
1∧ag2=ag′

2∧a=a′

∀id,o1,o2,o′
1,o′

2,attrs1,attrs2.
wasInfluencedBy(id,o′

2,o′
1,attrs1)∧wasInfluencedBy(id,o′

2,o′
1,attrs2)

⇒wasInfluencedBy(id,o2,o1,attrs1∪attrs2)∧o1=o′
1∧o2=o′

2

file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#key-object
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#key-properties

4/23/13 9:07 PMSemantics of the PROV Data Model

Page 20 of 33file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#bib-PROV-DICTIONARY

These properties follow immediately from the definitions of the semantics of the respective assertions, again because functions are used for
the underlying data.

QED

Constraint 24 (unique-generation)

Proof

This follows from Axiom 18.

QED

Constraint 25 (unique-invalidation)

Proof

This follows from Axiom 19.

QED

Constraint 26 (unique-wasStartedBy)

Proof

This follows from Axiom 20.

QED

Constraint 27 (unique-wasEndedBy)

Proof

This follows from Axiom 21.

QED

Constraint 28 (unique-startTime)

Proof

This follows from the semantics of , since the start times must both match that of the activity.

QED

Constraint 29 (unique-endTime)

Proof

∀gen1,gen2,e,a,t1,t2,attrs1,attrs2.
wasGeneratedBy(gen1,e,a,t1,attrs1)∧wasGeneratedBy(gen2,e,a,t2,attrs2)
⇒gen1=gen2

∀inv1,inv2,e,a,t1,t2,attrs1,attrs2.
wasInvalidatedBy(inv1,e,a,t1,attrs1)∧wasInvalidatedBy(inv2,e,a,t2,attrs2)
⇒inv1=inv2

∀start1,start2,a,e1,e2,a0,t1,t2,attrs1,attrs2.
wasStartedBy(start1,a,e1,a0,t1,attrs1)∧wasStartedBy(start2,a,e2,a0,t2,attrs2)
⇒start1=start2

∀end1,end2,a,e1,e2,a0,t1,t2,attrs1,attrs2.
wasEndedBy(end1,a,e1,a0,t1,attrs1)∧wasEndedBy(end2,a,e2,a0,t2,attrs2)
⇒end1=end2

∀start,a1,a2,t,t1,t2,e,attrs,attrs1.
activity(a2,t1,t2,attrs)∧wasStartedBy(start,a2,e,a1,t,attrs1)
⇒t1=t

wasStartedBy

∀end,a1,a2,t,t1,t2,e,attrs,attrs1.
activity(a2,t1,t2,attrs)∧wasEndedBy(end,a2,e,a1,t,attrs1)
⇒t2=t

file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#unique-generation
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#axiom18
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#unique-invalidation
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#axiom19
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#unique-wasStartedBy
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#axiom20
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#unique-wasEndedBy
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#axiom21
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#unique-startTime
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#unique-endTime

4/23/13 9:07 PMSemantics of the PROV Data Model

Page 21 of 33file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#bib-PROV-DICTIONARY

Proof

This follows from the semantics of , since the end times must both match that of the activity.

QED

5.2.2 Ordering constraints

Constraint 30 (start-precedes-end)

Proof

This follows from Axiom 22.

QED

Constraint 31 (start-start-ordering)

Proof

This follows from Axiom 22.

QED

Constraint 32 (end-end-ordering)

Proof

This follows from Axiom 23.

QED

Constraint 33 (usage-within-activity)

1.

2.

Proof

Part 1 follows from Axiom 22 and part 2 follows from Axiom 23.

QED

Constraint 34 (generation-within-activity)

1.

2.

wasEndedBy

∀start,end,a,e1,e2,a1,a2,t1,t2,attrs1,attrs2.
wasStartedBy(start,a,e1,a1,t1,attrs1)∧wasEndedBy(end,a,e2,a2,t2,attrs2)
⇒start precedes end

∀start1,start2,a,e1,e2,a1,a2,t1,t2,attrs1,attrs2.
wasStartedBy(start1,a,e1,a1,t1,attrs1)∧wasStartedBy(start2,a,e2,a2,t2,attrs2)
⇒start1 precedes start2

∀end1,end2,a,e1,e2,a1,a2,t1,t2,attrs1,attrs2.
wasEndedBy(end1,a,e1,a1,t1,attrs1)∧wasEndedBy(end2,a,e2,a2,t2,attrs2)
⇒end1 precedes end2

∀start,use,a,e1,e2,a1,t1,t2,attrs1,attrs2.
wasStartedBy(start,a,e1,a1,t1,attrs1)∧used(use,a,e2,t2,attrs2)
⇒start precedes use

∀use,end,a,e1,e2,a2,t1,t2,attrs1,attrs2.
used(use,a,e1,t1,attrs1)∧wasEndedBy(end,a,e2,a2,t2,attrs2)
⇒use precedes end

∀start,gen,e1,e2,a,a1,t1,t2,attrs1,attrs2.
wasStartedBy(start,a,e1,a1,t1,attrs1)∧wasGeneratedBy(gen,e2,a,t2,attrs2)
⇒start precedes gen

∀gen,end,e,e1,a,a1,t,t1,attrs,attrs1.

file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#start-precedes-end
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#axiom22
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#start-start-ordering
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#axiom22
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#end-end-ordering
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#axiom23
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#usage-within-activity
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#axiom22
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#axiom23
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#generation-within-activity

4/23/13 9:07 PMSemantics of the PROV Data Model

Page 22 of 33file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#bib-PROV-DICTIONARY

Proof

Part 1 follows from Axiom 22 and part 2 follows from Axiom 23.

QED

Constraint 35 (wasInformedBy-ordering)

Proof

This follows from the semantics of , Axiom 24, and the previous two constraints, because implies the existence
of intermediate generation and usage events linking and through an entity . The generation of must precede its use.

QED

Constraint 36 (generation-precedes-invalidation)

Proof

This follows from Axiom 24.

QED

Constraint 37 (generation-precedes-usage)

Proof

This follows from Axiom 24.

QED

Constraint 38 (usage-precedes-invalidation)

Proof

This follows from Axiom 25.

QED

Constraint 39 (generation-generation-ordering)

Proof

This follows from Axiom 24.

QED

∀gen,end,e,e1,a,a1,t,t1,attrs,attrs1.
wasGeneratedBy(gen,e,a,t,attrs)∧wasEndedBy(end,a,e1,a1,t1,attrs1)
⇒gen precedes end

∀id,start,end,a1,a ′
1,a2,a ′

2,e1,e2,t1,t2,attrs,attrs1,attrs2.
wasInformedBy(id,a2,a1,attrs)∧wasStartedBy(start,a1,e1,a ′

1,t1,attrs1)∧wasEndedBy(end,a2,e2,a ′
2,t2,attrs2)

⇒start precedes end

wasInformedBy wasInformedBy
a1 a2 e e

∀gen,inv,e,a1,a2,t1,t2,attrs1,attrs2.
wasGeneratedBy(gen,e,a1,t1,attrs1)∧wasInvalidatedBy(inv,e,a2,t2,attrs2)
⇒gen precedes inv

∀gen,use,e,a1,a2,t1,t2,attrs1,attrs2.
wasGeneratedBy(gen,e,a1,t1,attrs1)∧used(use,a2,e,t2,attrs2)
⇒gen precedes use

∀use,inv,a1,a2,e,t1,t2,attrs1,attrs2.
used(use,a1,e,t1,attrs1)∧wasInvalidatedBy(inv,e,a2,t2,attrs2)
⇒use precedes inv

∀gen1,gen2,e,a1,a2,t1,t2,attrs1,attrs2.
wasGeneratedBy(gen1,e,a1,t1,attrs1)∧wasGeneratedBy(gen2,e,a2,t2,attrs2)
⇒gen1 precedes gen2

file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#axiom22
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#axiom23
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#wasInformedBy-ordering
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#axiom24
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#generation-precedes-invalidation
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#axiom24
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#generation-precedes-usage
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#axiom24
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#usage-precedes-invalidation
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#axiom25
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#generation-generation-ordering
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#axiom24

4/23/13 9:07 PMSemantics of the PROV Data Model

Page 23 of 33file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#bib-PROV-DICTIONARY

Constraint 40 (invalidation-invalidation-ordering)

Proof

This follows from Axiom 25.

QED

Constraint 41 (derivation-usage-generation-ordering)

Proof

This follows from Axiom 26.

QED

Constraint 42 (derivation-generation-generation-ordering)

Proof

This follows from Axiom 27.

QED

Constraint 43 (wasStartedBy-ordering)

1.

2.

Proof

Part 1 follows from Axiom 24. Part 2 follows from Axiom 25.

QED

Constraint 44 (wasEndedBy-ordering)

1.

2.

Proof

Part 1 follows from Axiom 24. Part 2 follows from Axiom 25.

QED

∀inv1,inv2,e,a1,a2,t1,t2,attrs1,attrs2.
wasInvalidatedBy(inv1,e,a1,t1,attrs1)∧wasInvalidatedBy(inv2,e,a2,t2,attrs2)
⇒inv1 precedes inv2

∀d,e1,e2,a,gen2,use1,attrs.
notNull(a)∧notNull(gen2)∧notNull(use1)∧wasDerivedFrom(d,e2,e1,a,gen2,use1,attrs)
⇒use1 precedes gen2

∀d,gen1,gen2,e1,e2,a,a1,a2,g,u,t1,t2,attrs,attrs1,attrs2.
wasDerivedFrom(d,e2,e1,a,g,u,attrs)∧wasGeneratedBy(gen1,e1,a1,t1,attrs1)∧wasGeneratedBy(gen2,e2,a2,t2,attrs2)
⇒gen1 strictlyPrecedes gen2

∀gen,start,e,a,a1,a2,t1,t2,attrs1,attrs2.
wasGeneratedBy(gen,e,a1,t1,attrs1)∧wasStartedBy(start,a,e,a2,t2,attrs2)
⇒gen precedes start

∀start,inv,e,a,a1,a2,t1,t2,attrs1,attrs2.
wasStartedBy(start,a,e,a1,t1,attrs1)∧wasInvalidatedBy(inv,e,a2,t2,attrs2)
⇒start precedes inv

∀gen,end,e,a,a1,a2,t1,t2,attrs1,attrs2.
wasGeneratedBy(gen,e,a1,t1,attrs1)∧wasEndedBy(end,a,e,a2,t2,attrs2)
⇒gen precedes end

∀end,inv,e,a,a1,a2,t1,t2,attrs1,attrs2.
wasEndedBy(end,a,e,a1,t1,attrs1)∧wasInvalidatedBy(inv,e,a2,t2,attrs2)
⇒end precedes inv

file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#invalidation-invalidation-ordering
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#axiom25
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#derivation-usage-generation-ordering
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#axiom26
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#derivation-generation-generation-ordering
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#axiom27
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#wasStartedBy-ordering
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#axiom24
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#axiom25
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#wasEndedBy-ordering
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#axiom24
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#axiom25

4/23/13 9:07 PMSemantics of the PROV Data Model

Page 24 of 33file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#bib-PROV-DICTIONARY

Constraint 45 (specialization-generation-ordering)

Proof

This follows from Axiom 24 and the fact that if specializes then all of the events of are events of . Thus, the generation of
precedes all events of .

QED

Constraint 46 (specialization-invalidation-ordering)

Proof

This follows from Axiom 25 and the fact that if specializes then all of the events of are events of . Thus, the invalidation of
follows all events of .

QED

Constraint 47 (wasAssociatedWith-ordering)

In the following inferences, may be a placeholder -.

1.

2.

3.

4.

Proof

The four parts follow from Axiom 28 through Axiom 31 respectively.

QED

Constraint 48 (wasAttributedTo-ordering)

1.

2.

Proof

These properties follow from Axiom 32 and Axiom 33.

QED

∀gen1,gen2,e1,e2,a1,a2,t1,t2,attrs1,attrs2.
specializationOf(e2,e1)∧wasGeneratedBy(gen1,e1,a1,t1,attrs1)∧wasGeneratedBy(gen2,e2,a2,t2,attrs2)
⇒gen1 precedes gen2

e2 e1 e2 e1 e1
e2

∀inv1,inv2,e1,e2,a1,a2,t1,t2,attrs1,attrs2.
specializationOf(e1,e2)∧wasInvalidatedBy(inv1,e1,a1,t1,attrs1)∧wasInvalidatedBy(inv2,e2,a2,t2,attrs2)
⇒inv1 precedes inv2

e2 e1 e2 e1 e1
e2

pl

∀assoc,start1,inv2,ag,e1,e2,a1,a2,t1,t2,attrs1,attrs2.
wasAssociatedWith(assoc,a,ag,pl,attrs)∧wasStartedBy(start1,a,e1,a1,t1,attrs1)∧wasInvalidatedBy(inv2,ag,a2,t2,attrs2)
⇒start1 precedes inv2

∀assoc,gen1,end2,ag,e1,e2,a1,a2,t1,t2,attrs1,attrs2.
wasAssociatedWith(assoc,a,ag,pl,attrs)∧wasGeneratedBy(gen1,ag,a1,t1,attrs1)∧wasEndedBy(end2,a,e2,a2,t2,attrs2)
⇒gen1 precedes end2

∀assoc,start1,end2,ag,e1,e2,a1,a2,t1,t2,attrs1,attrs2.
wasAssociatedWith(assoc,a,ag,pl,attrs)∧wasStartedBy(start1,a,e1,a1,t1,attrs1)∧wasEndedBy(end2,ag,e2,a2,t2,attrs2)
⇒start1 precedes end2

∀assoc,start1,end2,ag,e1,e2,a1,a2,t1,t2,attrs1,attrs2.
wasAssociatedWith(assoc,a,ag,pl,attrs)∧wasStartedBy(start1,ag,e1,a1,t1,attrs1)∧wasEndedBy(end2,a,e2,a2,t2,attrs2)
⇒start1 precedes end2

∀att,gen1,gen2,e,a1,a2,t1,t2,ag,attrs,attrs1,attrs2.
wasAttributedTo(att,e,ag,attrs)∧wasGeneratedBy(gen1,ag,a1,t1,attrs1)∧wasGeneratedBy(gen2,e,a2,t2,attrs2)
⇒gen1 precedes gen2

∀att,start1,gen2,e,e1,a1,a2,ag,t1,t2,attrs,attrs1,attrs2.
wasAttributedTo(att,e,ag,attrs)∧wasStartedBy(start1,ag,e1,a1,t1,attrs1)∧wasGeneratedBy(gen2,e,a2,t2,attrs2)
⇒start1 precedes gen2

file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#specialization-generation-ordering
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#axiom24
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#specialization-invalidation-ordering
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#axiom25
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#wasAssociatedWith-ordering
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#axiom28
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#axiom31
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#wasAttributedTo-ordering
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#axiom32
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#axiom33

4/23/13 9:07 PMSemantics of the PROV Data Model

Page 25 of 33file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#bib-PROV-DICTIONARY

Constraint 49 (actedOnBehalfOf-ordering)

1.

2.

Proof

These properties follow from Axiom 34 and Axiom 35.

QED

5.2.3 Typing constraints

Constraint 50 (typing)

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

∀del,gen1,inv2,ag1,ag2,a,a1,a2,t1,t2,attrs,attrs1,attrs2.
actedOnBehalfOf(del,ag2,ag1,a,attrs)∧wasGeneratedBy(gen1,ag1,a1,t1,attrs1)∧wasInvalidatedBy(inv2,ag2,a2,t2,attrs2)
⇒gen1 precedes inv2

∀del,start1,end2,ag1,ag2,a,a1,a2,e1,e2,t1,t2,attrs,attrs1,attrs2.
actedOnBehalfOf(del,ag2,ag1,a,attrs)∧wasStartedBy(start1,ag1,e1,a1,t1,attrs1)∧wasEndedBy(end2,ag2,e2,a2,t2,attrs2)
⇒start1 precedes end2

∀e,attrs.
entity(e,attrs)
⇒typeOf(e,entity)

∀ag,attrs.
agent(ag,attrs)
⇒typeOf(ag,agent)

∀a,t1,t2,attrs.
activity(a,t1,t2,attrs)
⇒typeOf(a,activity)

∀u,a,e,t,attrs.
used(u,a,e,t,attrs)
⇒typeOf(a,activity)∧typeOf(e,entity)

∀g,a,e,t,attrs.
wasGeneratedBy(g,e,a,t,attrs)
⇒typeOf(a,activity)∧typeOf(e,entity)

∀inf,a2,a1,t,attrs.
wasInformedBy(inf,a2,a1,t,attrs)
⇒typeOf(a1,activity)∧typeOf(a2,activity)

∀start,a2,e,a1,t,attrs.
wasStartedBy(start,a2,e,a1,t,attrs)
⇒typeOf(a1,activity)∧typeOf(a2,activity)∧typeOf(e,entity)

∀end,a2,e,a1,t,attrs.
wasEndedBy(end,a2,e,a1,t,attrs)
⇒typeOf(a1,activity)∧typeOf(a2,activity)∧typeOf(e,entity)

∀inv,a,e,t,attrs.
wasInvalidatedBy(inv,e,a,t,attrs)
⇒typeOf(a,activity)∧typeOf(e,entity)

∀id,e2,e1,a,g2,u1,attrs.
notNull(a)∧notNull(g2)∧notNull(u1)∧wasDerivedFrom(id,e2,e1,a,g2,u1,attrs)
⇒typeOf(e2,entity)∧typeOf(e1,activity)∧typeOf(a,activity)

∀id,e2,e1,attrs.
wasDerivedFrom(id,e2,e1,−,−,−,attrs)
⇒typeOf(e2,entity)∧typeOf(e1,activity)

∀id,e,ag,attrs.
wasAttributedTo(id,e,ag,attrs)
⇒typeOf(e,entity)∧typeOf(ag,agent)

∀id,a,ag,pl,attrs.
notNull(pl)∧wasAssociatedWith(id,a,ag,pl,attrs)
⇒typeOf(a,activity)∧typeOf(ag,agent)∧typeOf(pl,entity)

∀id,a,ag,attrs.

file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#actedOnBehalfOf-ordering
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#axiom34
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#axiom35
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#typing

4/23/13 9:07 PMSemantics of the PROV Data Model

Page 26 of 33file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#bib-PROV-DICTIONARY

15.

16.

17.

18.

19.

Proof

Each typing constraint follows immediately from well-formedness criteria marked [WF] in the corresponding semantics for formulas. The final
constraint requires Axiom 36.

QED

5.2.4 Impossibility constraints

Constraint 51 (impossible-unspecified-derivation-generation-use)

1.

2.

3.

Proof

Each part follows from the fact that the semantics of only allows formulas to hold when either all three of are " "
(denoting) or none of them are.

QED

Constraint 52 (impossible-specialization-reflexive)

Proof

This follows from the fact that in the semantics of , the requirement that one of the inclusions is strict implies that the two
entities cannot be the same.

QED

Constraint 53 (impossible-property-overlap)

For each and
 such

that and are different relation names, the following constraint holds:

∀id,a,ag,attrs.
wasAssociatedWith(id,a,ag,−,attrs)
⇒typeOf(a,activity)∧typeOf(ag,agent)

∀id,ag2,ag1,a,attrs.
actedOnBehalfOf(id,ag2,ag1,a,attrs)
⇒typeOf(ag2,agent)∧typeOf(ag1,agent)∧typeOf(a,activity)

∀e2,e1.
alternateOf(e2,e1)
⇒typeOf(e2,entity)∧typeOf(e1,entity)

∀e2,e1.
specializationOf(e2,e1)
⇒typeOf(e2,entity)∧typeOf(e1,entity)

∀c,e.
hadMember(c,e)
⇒typeOf(c,Collection)∧typeOf(e,entity)

∀c.
entity(c,[prov:type=prov:emptyCollection]))
⇒typeOf(c,entity)∧typeOf(c,Collection)∧typeOf(c,EmptyCollection)

∀id,e1,e2,g,attrs.
notNull(g)∧wasDerivedFrom(id,e2,e1,−,g,−,attrs)
⇒False

∀id,e1,e2,u,attrs.
notNull(u)∧wasDerivedFrom(id,e2,e1,−,−,u,attrs)
⇒False

∀id,e1,e2,g,u,attrs.
notNull(g)∧notNull(u)∧wasDerivedFrom(id,e2,e1,−,g,u,attrs)
⇒False

wasDerivedFrom a,g,u −
⊥

∀e.
specializationOf(e,e)
⇒False

specializationOf

r
s∈{used,wasGeneratedBy,wasInvalidatedBy,wasStartedBy,wasEndedBy,wasInformedBy,wasAttributedTo,wasAssociatedWith,actedOnBehalfOf}

r s
∀id,a1,…,am,b1,…,bn.

file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#axiom36
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#impossible-unspecified-derivation-generation-use
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#impossible-specialization-reflexive
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#impossible-property-overlap

4/23/13 9:07 PMSemantics of the PROV Data Model

Page 27 of 33file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#bib-PROV-DICTIONARY

Proof

This follows from the assumption that the different kinds of influences are disjoint sets, characterized by their types. Note that generic
influences are allowed to overlap with more specific kinds of influence.

QED

Constraint 54 (impossible-object-property-overlap)

For each and each

the following constraint holds:

Proof

This follows from the assumption that influences are distinct from other objects (entities, activities or agents).

QED

Constraint 55 (entity-activity-disjoint)

Proof

This follows from the assumption that entities and activities are disjoint.

QED

Constraint 56 (membership-empty-collection)

Proof

This follows from the definition of the semantics of , which requires that there are no members of the collection
denoted by .

QED

6. Soundness and Completeness
Above we have presented arguments for the soundness of the constraints and inferences with respect to the semantics. Here, we relate the
notions of validity and normal form defined in PROV-CONSTRAINTS to the semantics.

6.1 Soundness

Our main soundness result is:

Theorem 39 (soundness-theorem)

Let be a PROV structure, that is, a structure providing all of the components above and satisfying all of the axioms.

1. If is an instance and and is obtained from by applying one of the PROV inferences, then .
2. If is an instance and and is obtained from by applying one of the PROV key or uniqueness constraints, then .
3. If is an instance and then has a normal form and .
4. If is a normal form and then satisfies all of the ordering, typing and impossibility constraints.
5. If then is valid.

Proof

∀id,a1,…,am,b1,…,bn.
r(id,a1,…,am)∧s(id,b1,…,bn)
⇒False

p∈{entity,activity,agent}
r∈{used,wasGeneratedBy,wasInvalidatedBy,wasStartedBy,wasEndedBy,wasInformedBy,wasAttributedTo,wasAssociatedWith,actedOnBehalfOf,wasInfluenced

∀id,a1,…,am,b1,…,bn.
p(id,a1,…,am)∧r(id,b1,…,bn)
⇒False

∀id.
typeOf(id,entity)∧typeOf(id,activity)
⇒False

∀c,e.
hasMember(c,e)∧typeOf(c,EmptyCollection)
⇒False

typeOf(c,EmptyCollection)
c

W

I W⊨I I′ I W⊨I′

I W⊨I I′ I W⊨I′

I W⊨I I I′ W⊨I′

I W⊨I I
W⊨I I

file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#impossible-object-property-overlap
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#entity-activity-disjoint
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#membership-empty-collection
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#soundness-theorem

4/23/13 9:07 PMSemantics of the PROV Data Model

Page 28 of 33file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#bib-PROV-DICTIONARY

Proof

For part 1, the arguments are as in the previous section.

For part 2, if then since satisfies the logical forms of all uniqueness and key constraints, constraint application cannot fail on and
.

For part 3, proceed by induction on a terminating sequence of inference or uniqueness constraint steps: if is in normal form then we are
done. If is not in normal form then if an inference is applicable, then use part 1; if a uniqueness constraint is applicable, then use part 2.

For part 4, the arguments are as in the previous section for each constraint.

Finally, for part 5, suppose . Then where is the normal form of by part 2. By part 3, satisfies all of the remaining constraints,
so is valid.

QED

6.2 Weak Completeness

In this section we give a translation from valid PROV instances to structures, and show that a valid PROV instance has a model. We call this
property weak completeness.

Remark

The term weak refers to the fact that there are still some inferences that are sound in the semantics but not enforced by validation. For
example, consider the following (valid) PROV instance fragment:

entity(e,[a=1])
agent(e,[b=2])

This instance is valid and has a model, but in every model satisfying the instance, it is also true that:

entity(e,[a=1,b=2])
agent(e,[a=1,b=2])

Thus, weak completeness captures the fact that every valid instance has a model, but does not imply that a valid instance satisfies all of the
deductions possible in that model.

Let be a valid PROV instance that is in normal form. We define a structure as follows, by giving the sets, functions and relations specified
in the components in Section 3, and finally verifying that the axioms hold.

First, without loss of generality, we assume that all times specified in activity or event formulas in are ground values. If not, set each variable in
such a position to some dummy value. This is justified by the following fact:

Lemma 40 (time-grounding)

If is valid then is valid, where is any substitution that maps time variables to time constants.

Proof

First, consider a substitution that maps a single time variable to a constant. It is straightforward to check that if is in normal form,
then is in normal form, since none of the inferences or uniqueness constraints can be enabled by changing a time variable uniformly in
. Similarly, the remaining constraints are insensitive to the time values, so is in normal form and satisfies all of the remaining

constraints just as does. The general case of a substitution that replaces multiple time variables with constants is a straightforward
generalization since we can view such a substitution as a composition of single-variable substitutions.

QED

6.2.1 Sets

The sets of structure are:

W⊨I W I
W⊨I′

I
I

W⊨I W⊨I′ I′ I I′

I

I M(I)

I

I S(I) S

S=[t:=c] I
S(I)

I S(I)
I

M(I)

Entities = {id∣I⊨typeOf(id,entity)}

file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#structures
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#time-grounding

4/23/13 9:07 PMSemantics of the PROV Data Model

Page 29 of 33file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#bib-PROV-DICTIONARY

In the definitions of , , and we use the notation to indicate that must have type in according
to the typing constraints. For example, for entities, this means that the set contains all identifiers appearing in the ,

, or formulas, as well as all tose appearing in the appropriate positions of other formulas, as specified in the
typing constraints.

In the definitions of , , , and we write , , and respectively to indicate additional activities,
generations and usages added for imprecise derivations or entities.

In addition, to define the set of , we introduce an equivalence relation on as follows:

The fact that this is an equivalence relation follows from the fact that is in normal form, since the constraints on ensure that it is an
equivalence relation. Recall that given an equivalence relation on some set , the equivalence class of is the set . The
quotient of by an equivalence relation on is the set of equivalence classes, . Now we define the set of as the quotient
of -equivalence classes of .

Observe that since is normalized and valid, entities and activities are disjoint, the influences are disjoint from entities, activities, and agents, and
the different subsets of events and influences are pairwise disjoint, as required.

6.2.2 Functions

First, we consider the functions associated with .

Above, we introduce a fresh attribute name , not already in use in , along with a fresh value and for each entity we add a value to
. This construction ensures that if an entity is a specialization of another in then the specialization relationship will hold in . We

also define the set of all events involved in as the set of events immediately involved in or any specialization of . Similarly, the values of
attributes of are those immediately declared for along with those of any that specializes. We also introduce dummy generation and
invalidation events for each entity , along with activities to perform them.

Similarly, for , we employ an auxiliary function that collects the set of all events in which one of the entities
constituting the thing participated.

Entities = {id∣I⊨typeOf(id,entity)}
Plans = {pl∣∃id,ag,ac,attrs. wasAssociatedWith(id,ag,act,pl,attrs)∈I,pl≠−}

Collections = {c∣I⊨typeOf(c,prov:Collection) or I⊨typeOf(c,prov:EmptyCollection)}
Activities = {id∣I⊨typeOf(id,activity)}

∪ {a id,a ′
id

∣id∈Entities}
∪ {a id∣∃id,e2,e1. wasDerivedFrom(id,e2,e1,−,−,−,attrs)∈I}

Agents = {id∣I⊨typeOf(id,agent)}
Usages = {id∣∃a,e,t,attrs. used(id,a,e,t,attrs)∈I}

∪ {uid∣∃id,e2,e1,attrs. wasDerivedFrom(id,e2,e1,−,−,−,attrs)∈I}
Generations = {id∣∃e,a,t,attrs. wasGeneratedBy(id,e,a,t,attrs)∈I}

∪ {gid∣∃id,e2,e1,attrs. wasDerivedFrom(id,e2,e1,−,−,−,attrs)∈I}
∪ {gid∣id∈Entities}

Invalidations = {id∣∃e,a,t,attrs. wasInvalidatedBy(id,e,a,t,attrs)∈I}
∪ {i id∣id∈Entities}

Starts = {id∣∃a,e,a′,t,attrs. wasStartedBy(id,a,e,a′,t,attrs)∈I}
Ends = {id∣∃a,e,a′,t,attrs. wasEndedBy(id,a,e,a′,t,attrs)∈I}

Events = Usages∪Generations∪Invalidations∪Starts∪Ends
Associations = {id∣∃ag,act,pl,attrs. wasAssociatedWith(id,ag,act,pl,attrs)∈I}
Attributions = {id∣∃e,ag,attrs. wasAttributedTo(id,e,ag,attrs)∈I}
Delegations = {id∣∃ag2,ag1,attrs. actedOnBehalfOf(id,ag2,ag1,act,attrs)∈I}

Communications = {id∣∃a2,a1,attrs. wasInformedBy(id,a2,a1,attrs)∈I}
Derivations = {id∣∃e2,e1,a,g,u,attrs. wasDerivedFrom(id,e2,e1,a,g,u,attrs)∈I}
Influences = Events∪Associations∪Attributions∪Communications∪Delegations

∪ {id∣∃o2,o1,attrs. wasInfluencedBy(id,o2,o1,attrs)∈I}
Objects = Entities∪Activities∪Agents∪Influences

Entities Collections Activities Agents I⊨ typeOf(id, t) id t I
Entities e,e′ entity(e,attrs)

alternateOf(e,e′) specializationOf(e,e′)

Activities Generations Invalidations Usages a id gid i id uid

Things Entities

e1≡e2⟺alternateOf(e1,e2)∈I

I alternateOf
≡ X x∈X [x]≡={y∈X∣x≡y}

X X X≡={[x]≡∣x∈X} Things
≡ Entities

Things=Entities/≡={[e]≡∣e∈Entities}

I

Entities

events′(e) = {id∣used(id,a,e,t,attrs)∈I}
∪ {id∣wasGeneratedBy(id,e,a,t,attrs)∈I}
∪ {id∣wasInvalidatedBy(id,e,a,t,attrs)∈I}
∪ {id∣wasStartedBy(id,a,e,a′,t,attrs)∈I}
∪ {id∣wasEndedBy(id,a,e,a′,t,attrs)∈I}
∪ {ge,ie}

events(e) = events′(e)∪ ⋃
specializationOf(e′,e)∈I

events′(e′)

value′(e,a) = {v∣entity(e,attrs)∈I,(a=v)∈attrs}(a≠uniq)
value′(e,uniq) = {uniqe}

value(e,a) = value′(e)∪ ⋃
specializationOf(e,e′)∈I

value′(e′)
thingOf(e) = [e]≡

uniq I e e uniqe
values(e,uniq) I M(I)

e e e
e e e′ e

e ae,a ′
e

Things events:Things→P(Events)

events(T) = ⋃ events(e)

4/23/13 9:07 PMSemantics of the PROV Data Model

Page 30 of 33file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#bib-PROV-DICTIONARY

The functions , and mapping activities to their start and end times are defined as follows:

The start and end times are arbitrary (say, some zero value) for activities with no formula declaring the times. The above definitions of
 and ignore any start times asserted in or formulas. If both and

statements are present, then they must match, but PROV-CONSTRAINTS does not require that the times of multiple start or end events match
for an activity with no statement.

Remark

The following valid instance exemplifies the above discussion, when :

wasStartedBy(id1;a,e1,a1,t1,[])
wasStartedBy(id2;a,e2,a2,t2,[])

This instance becomes invalid if we add an statement, because it expands to where are existential
variables, and uniqueness constraints require that , which leads to uniqueness constraint failure.

For other besides and , the associated sets of are defined to be empty. (An that happens to be an or
 will have the set of events defined above for the appropriate kind of object. Note that since and are disjoint, this

definition is unambiguous.)

The function mapping to their is defined as follows:

This definition is deterministic because the sets of identifiers of different are disjoint, and the associated times are unique.

The functions giving the interpretations of the different identified influences are as follows:

Note that since is normalized and valid, by the uniqueness constraints these functions are all well-defined. In the case for imprecise derivations,
we generate additional activities, generations and usages linking to .

The definition of the function is more involved, and is as follows:

events(T) = ⋃
e∈T

events(e)
value(T,a,evt) = ⋃

e∈T,evt∈events(e)
value(e,a)

events startTime endTime

events(a) = {id∣used(id,a,e,t,attrs)∈I}
∪ {id∣wasGeneratedBy(id,e,a,t,attrs)∈I}
∪ {id∣wasInvalidatedBy(id,e,a,t,attrs)∈I}
∪ {id∣wasStartedBy(id,a,e,a′,t,attrs)∈I}
∪ {id∣wasEndedBy(id,a,e,a′,t,attrs)∈I}
∪ {ge,ie}

startTime(id) = t1 where activity(a,t1,t2,attrs)∈I
endTime(id) = t2 where activity(a,t1,t2,attrs)∈I

activity
startTime endTime wasStartedBy wasEndedBy activity wasStartedBy/wasEndedBy

activity

t1≠t2

activity(a,[]) activity(a,T1,T2,[]) T1,T2
t1=T1=t2

Objects Entities Activities Events Agent Entity
Activity Entities Activities

time Events Times

time(id) = t where used(id,a,e,t,attrs)∈I
time(id) = t where wasGeneratedBy(id,e,a,t,attrs)∈I
time(id) = t where wasInvalidatedBy(id,e,a,t,attrs)∈I
time(id) = t where wasStartedBy(id,a,e,a′,t,attrs)∈I
time(id) = t where wasEndedBy(id,a,e,a′,t,attrs)∈I

Events

used(id) = (a,e) where used(id,a,e,t,attrs)∈I
used(uid) = (a id,e1) where wasDerivedFrom(id,e2,e1,−,−,−,attrs)∈I

generated(id) = (e,a) where wasGeneratedBy(id,e,a,t,attrs)∈I
generated(gid) = (e2,a id) where wasDerivedFrom(id,e2,e1,−,−,−,attrs)∈I
generated(ge) = (e,ae) where e∈Entities
invalidated(id) = (e,a) where wasInvalidatedBy(id,e,a,t,attrs)∈I
invalidated(ie) = (e,a ′

e) where e∈Entities
started(id) = (a,e,a′) where wasStartedBy(id,a,e,a′,t,attrs)∈I
ended(id) = (a,e,a′) where wasEndedBy(id,a,e,a′,t,attrs)∈I

associatedWith(id) = (ag,act,pl) where wasAssociatedWith(id,ag,act,pl,attrs)∈I
attributedTo(id) = (e,ag) where wasAttributedTo(id,e,ag,attrs)∈I

actedFor(id) = (ag2,ag1,act) where actedOnBehalfOf(id,ag2,ag1,act,attrs)∈I
communicated(id) = (a2,a1) where wasInformedBy(id,a2,a1,attrs)∈I
derivationPath(id) = e2⋅g⋅a⋅u⋅e1 where wasDerivedFrom(id,e2,e1,a,g,u,attrs)∈I
derivationPath(id) = e2⋅gid⋅a id⋅uid⋅e1 where wasDerivedFrom(id,e2,e1,−,−,−,attrs)∈I

I
e2 e1

influenced

influenced(id) = used(id)∪generated(id)∪invalidated(id)
∪ {(a,e)∣(a,e,a′)∈started(id)}
∪ {(a,e)∣(a,e,a′)∈ended(id)}
∪ {(ag,act)∣(ag,act,pl)∈associatedWith(id)}
∪ attributedTo(id)
∪ {(ag2,ag1)∣(ag2,ag1,act)∈actedFor(id)}
∪ communicated(id)
∪ {(e2,e1)∣e2⋅w⋅e1∈derivationPath(id)}
∪ {(o2,o1)∣wasInfluencedBy(id,o2,o1)∈I}

influenced(id) id

4/23/13 9:07 PMSemantics of the PROV Data Model

Page 31 of 33file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#bib-PROV-DICTIONARY

This definition ensures that by construction contains all of the other associated relationships. For any specific , however, most of
the above sets will be empty, and the final line will often be redundant. It is not always redundant, because it is possible to assert an unspecified
influence in .

It is straightforward to verify (by their definitions) that the event sets associated with entities and activities satisfy the side-conditions in
Component 9.

Finally, the collection membership function is defined as follows:

6.2.3 Relations

We introduced a relation corresponding to above, in defining , but this relation is not a component of the semantics.

The event ordering relation is defined as follows:

closed under reflexivity and transitivity. Here, we are using a slight abuse of notation: we write for the directed graph that is used during
validation of to test for cycles among event ordering constraints. See Sec. 7.1 of PROV-CONSTRAINTS [PROV-CONSTRAINTS].

6.2.4 Axioms

To verify that the construction of yields a PROV structure, we must ensure that all of the axioms and side-conditions in the components are
satisfied. As noted above, the disjointness constraints are satisfied by construction.

For each axiom we give the corresponding justification:

1. Axiom 1 follows because is normalized with respect to Inference 6.
2. Axiom 2 follows from the construction, since we add dummy generation and invalidation events for every entity.
3. Axioms 3 and 4 follow because is normalized with respect to Inference 9 and 10 respectively.
4. Axiom 5 follows because is normalized with respect to Inference 12.
5. Axioms 6 and 7 follow because is normalized with respect to Inference 13 and 14 respectively.
6. Axioms 8 through 17 follow because is normalized with respect to Inference 15.
7. Axioms 18 through 21 follow because is normalized with respect to uniqueness constraints 24 through 27.
8. Axiom 22 follows because constraints 30, 31, 33, 34 ensure that a start event for an activity precedes any other start, end, usage or

generation events involving that activity.
9. Axiom 23 follows because constraints 30, 32, 33, 34 ensure that an end event for an activity follows any other events involving that activity.

10. Axiom 24 follows because constraints 34, 36, 37, 39 ensure that a generation event for an entity precedes any other events involving that
entity.

11. Axiom 25 follows because constraints 36, 38, 40, 43, 44 ensure that an invalidation event for an entity follows any other generation, usage,
or invalidation events involving that entity.

12. Axiom 26 follows from constraint 41.
13. Axiom 27 follows from constraint 42 and from the fact that the event ordering constraint graph associated with a valid instance cannot

have any cycles involving a strict precedence edge.
14. Axioms 28 through 31 follow from Constraint 47.
15. Axioms 32 and 33 follow from Constraint 48.
16. Axioms 34 and 35 follow from Constraint 49.
17. Axiom 36 follows from Constraint 50, part 19, and the semantics of .

6.2.5 Main results

The main results of this section are that if a valid PROV instance has a model that satisfies all of the inferences and constraints. Thus, a
form of completeness holds: every valid PROV instance has a model.

Theorem 41 (weak-completeness-theorem)

Suppose is a valid PROV instance. Then there exists a PROV structure such that .

Proof

First, we consider the case where itself is a valid, normalized PROV instance , with no existential variables, and let be the
corresponding structure. Then is a PROV structure, satisfying all of the axioms (and hence all of the inferences and constraints) stated
above.

Moreover, , as can be verified on a case-by-case basis for each type of formula by considering its semantics and the definition of the
construction of . Most cases are straightforward; we consider the cases of and since they are among the most
interesting.

Suppose . We wish to show that . Since there are no existential variables in , we know that
. Moreover, according to the equivalence relation defined above, and so ,

so we can conclude that .
Suppose . We wish to show that . Again, clearly , and since satisfies
all inferences, we know that so clearly as argued above. Next,

influenced(id) id

I

members

members(c)={e∣hadMember(c,e)∈I

≡ alternateOf Things

evt⪯evt′⟺(evt,evt′)∈GI

GI
I

M(I)

I

I
I

I
I

I

GI I

typeof

I M⊨I

J M M⊨J

J I M(I)
M(I)

M(I)⊨I
M alternateOf specializationOf

alternateOf(e1,e2)∈I M(I)⊨alternateOf(e1,e2) I
e1,e2∈M(I).Entities e1≡e2 thingOf(e1)=[e1]≡=[e2]≡=thingOf(e2)

M(I)⊨alternateOf(e1,e2)
specializationOf(e1,e2)∈I M(I)⊨specializationOf(e1,e2) e1,e2∈Entities I

alternateOf(e1,e2)∈I thingOf(e2)=thingOf(e1)

events(e1) = events′(e1)∪ ⋃ events′(e′)

file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#events
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#bib-PROV-CONSTRAINTS
file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#weak-completeness-theorem

4/23/13 9:07 PMSemantics of the PROV Data Model

Page 32 of 33file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#bib-PROV-DICTIONARY

because and all that are specializations of are also specializations of . Furthermore, for each ,

for the same reason. Finally, by construction and so the inclusion is strict for the special
attribute . Thus, we have verified all of the conditions necessary to conclude .

Next, we show how to handle a normalized, valid contains existential variables . Choose fresh constants of appropriate
types for the existential variables and define . Then by the above argument. Moreover, . So is itself
the desired model.

Finally, to handle the case where is an arbitrary valid instance, we need to show that if is not in normal form, and normalizes to some
such that , then . We can prove this by induction on the length of the sequence of normalization steps. The base case, when ,
is established already. Suppose normalizes in steps and we can perform one normalization step on it to obtain , which normalizes to
 in steps. By induction, we know that . For each possible normalization step, we must show that if then .

First consider inference steps. These add information, that is, . Hence it is immediate that since every formula in is in , and all
formulas of are satisfied in .

Next consider uniqueness constraint steps, which may involve merging formulas. That is,
and , where is a unifying substitution making for each . Since , we
must have for some , and therefore we must also have that and . We can extend
to a valuation such that where . Also, and .
Moreover, since is a unifier, we also have . Finally, since we can always remove attributes from an atomic
formula without damaging its satisfiability, we can conclude that . To conclude, we have shown

, that is, , as desired.

QED

A. Acknowledgements
This document has been produced by the PROV Working Group, and its contents reflect extensive discussion within the Working Group as a
whole as well as feedback and comments from external reviewers. Thanks specifically to Khalid Belhajjame, Tom De Nies, Paolo Missier, Simon
Miles, Luc Moreau, Satya Sahoo, Jan van den Bussche, Joachim Van Herwegen, and Antoine Zimmermann for detailed feedback.

We would also like to acknowledge Schloss Dagstuhl - Leibniz Center for Informatics, because significant progress was made on this document
at Dagstuhl Seminar 12091 (Principles of Provenance) that took place from February 26 to March 2, 2012.

Thanks also to Robin Berjon for the ReSPec.js specification writing tool and to MathJax for their LaTeX-to-HTML conversion tools, both of which
aided in the preparation of this document.

Members of the Provenance Working Group at the time of publication of this document were: Ilkay Altintas (Invited expert), Reza B'Far (Oracle
Corporation), Khalid Belhajjame (University of Manchester), James Cheney (University of Edinburgh, School of Informatics), Sam Coppens
(iMinds - Ghent University), David Corsar (University of Aberdeen, Computing Science), Stephen Cresswell (The National Archives), Tom De
Nies (iMinds - Ghent University), Helena Deus (DERI Galway at the National University of Ireland, Galway, Ireland), Simon Dobson (Invited
expert), Martin Doerr (Foundation for Research and Technology - Hellas(FORTH)), Kai Eckert (Invited expert), Jean-Pierre EVAIN (European
Broadcasting Union, EBU-UER), James Frew (Invited expert), Irini Fundulaki (Foundation for Research and Technology - Hellas(FORTH)), Daniel
Garijo (Universidad Politécnica de Madrid), Yolanda Gil (Invited expert), Ryan Golden (Oracle Corporation), Paul Groth (Vrije Universiteit), Olaf
Hartig (Invited expert), David Hau (National Cancer Institute, NCI), Sandro Hawke (W3C/MIT), Jörn Hees (German Research Center for Artificial
Intelligence (DFKI) Gmbh), Ivan Herman, (W3C/ERCIM), Ralph Hodgson (TopQuadrant), Hook Hua (Invited expert), Trung Dong Huynh
(University of Southampton), Graham Klyne (University of Oxford), Michael Lang (Revelytix, Inc.), Timothy Lebo (Rensselaer Polytechnic
Institute), James McCusker (Rensselaer Polytechnic Institute), Deborah McGuinness (Rensselaer Polytechnic Institute), Simon Miles (Invited
expert), Paolo Missier (School of Computing Science, Newcastle university), Luc Moreau (University of Southampton), James Myers (Rensselaer
Polytechnic Institute), Vinh Nguyen (Wright State University), Edoardo Pignotti (University of Aberdeen, Computing Science), Paulo da Silva
Pinheiro (Rensselaer Polytechnic Institute), Carl Reed (Open Geospatial Consortium), Adam Retter (Invited Expert), Christine Runnegar (Invited
expert), Satya Sahoo (Invited expert), David Schaengold (Revelytix, Inc.), Daniel Schutzer (FSTC, Financial Services Technology Consortium),
Yogesh Simmhan (Invited expert), Stian Soiland-Reyes (University of Manchester), Eric Stephan (Pacific Northwest National Laboratory), Linda
Stewart (The National Archives), Ed Summers (Library of Congress), Maria Theodoridou (Foundation for Research and Technology -
Hellas(FORTH)), Ted Thibodeau (OpenLink Software Inc.), Curt Tilmes (National Aeronautics and Space Administration), Craig Trim (IBM
Corporation), Stephan Zednik (Rensselaer Polytechnic Institute), Jun Zhao (University of Oxford), Yuting Zhao (University of Aberdeen,
Computing Science).

B. References

B.1 Informative references

events(e1) = events′(e1)∪ ⋃
specializationOf(e′,e1)∈I

events′(e′)

⊆ events′(e2)∪ ⋃
specializationOf(e′,e2)∈I

events′(e2)

= events(e2)

specializationOf(e1,e2)∈I e′ e1 e2 attr

value(e1,attr) = value′(e1,attr)∪ ⋃
specializationOf(e1,e′)∈I

value′(e′,attr)

⊇ value′(e2,attr)∪ ⋃
specializationOf(e2,e′)∈I

value′(e′,attr)

= value(e2,attr)

uniqe1
∈value(e1,uniq) uniqe1

∉value(e2,uniq)
uniq M(I)⊨specializationOf(e1,e2)

I x1,…,xn c1,…,cn
ρ(xi)=ci M(ρ(I))⊨ρ(I) M(ρ(I)),ρ⊨I M(ρ(I))

J J I
M⊨I M⊨J J=I

J n+1 J′

I n M⊨J′ M⊨J′ M⊨J

J′⊇J M⊨J J J′

J′ M

J=J0∪{r(id,a1,…,an,attrs1),r(id,b1,…,bn,attrs2)}
J′=S(J0)∪{r(id,S(a1),…,S(an),attrs1∪attrs2)} S S(ai)=S(bi) i∈{1,…,n} M⊨J′

M,ρ⊨J′ ρ M,ρ⊨S(J0) M,ρ⊨r(id,S(a1),…,S(an),attrs1∪attrs2) ρ
ρ′ M,ρ′⊨S(x1)=x1∧⋯∧S(xk)=xk dom(S)={x1,…,xk} M,ρ′⊨J0 M,ρ′⊨r(id,a1,…,an,attrs1∪attrs2)

S M,ρ′⊨r(id,b1,…,bn,attrs1∪attrs2)
M,ρ′⊨r(id,a1,…,an,attrs1)∧r(id,b1,…,bn,attrs2)

M⊨J0∪{r(id,a1,…,an,attrs1),r(id,b1,…,bn,attrs2)} M⊨J

http://www.dagstuhl.de/
http://www.dagstuhl.de/en/program/calendar/semhp/?semnr=12091

4/23/13 9:07 PMSemantics of the PROV Data Model

Page 33 of 33file:///Users/jcheney/research/local/prov-w3c/semantics/prov-sem.html#bib-PROV-DICTIONARY

[PROV-AQ]
Graham Klyne; Paul Groth; eds. Provenance Access and Query. 30 April 2013, W3C Note. URL: http://www.w3.org/TR/2013/NOTE-prov-
aq-20130430/

[PROV-CONSTRAINTS]
James Cheney; Paolo Missier; Luc Moreau; eds. Constraints of the PROV Data Model. 30 April 2013, W3C Recommendation. URL:
http://www.w3.org/TR/2013/REC-prov-constraints-20130430/

[PROV-DC]
Daniel Garijo; Kai Eckert; eds. Dublin Core to PROV Mapping. 30 April 2013, W3C Note. URL: http://www.w3.org/TR/2013/NOTE-prov-dc-
20130430/

[PROV-DICTIONARY]
Tom De Nies; Sam Coppens; eds. PROV Dictionary: Modeling Provenance for Dictionary Data Structures. 30 April 2013, W3C Note. URL:
http://www.w3.org/TR/2013/NOTE-prov-dictionary-20130430/

[PROV-DM]
Luc Moreau; Paolo Missier; eds. PROV-DM: The PROV Data Model. 30 April 2013, W3C Recommendation. URL:
http://www.w3.org/TR/2013/REC-prov-dm-20130430/

[PROV-LINKS]
Luc Moreau; Timothy Lebo; eds. Linking Across Provenance Bundles. 30 April 2013, W3C Note. URL: http://www.w3.org/TR/2013/NOTE-
prov-links-20130430/

[PROV-N]
Luc Moreau; Paolo Missier; eds. PROV-N: The Provenance Notation. 30 April 2013, W3C Recommendation. URL:
http://www.w3.org/TR/2013/REC-prov-n-20130430/

[PROV-O]
Timothy Lebo; Satya Sahoo; Deborah McGuinness; eds. PROV-O: The PROV Ontology. 30 April 2013, W3C Recommendation. URL:
http://www.w3.org/TR/2013/REC-prov-o-20130430/

[PROV-OVERVIEW]
Paul Groth; Luc Moreau; eds. PROV-OVERVIEW: An Overview of the PROV Family of Documents. 30 April 2013, W3C Note. URL:
http://www.w3.org/TR/2013/NOTE-prov-overview-20130430/

[PROV-PRIMER]
Yolanda Gil; Simon Miles; eds. PROV Model Primer. 30 April 2013, W3C Note. URL: http://www.w3.org/TR/2013/NOTE-prov-primer-
20130430/

[PROV-XML]
Hook Hua; Curt Tilmes; Stephan Zednik; eds. PROV-XML: The PROV XML Schema. 30 April 2013, W3C Note. URL:
http://www.w3.org/TR/2013/NOTE-prov-xml-20130430/

http://www.w3.org/TR/2013/NOTE-prov-aq-20130430/
http://www.w3.org/TR/2013/NOTE-prov-aq-20130430/
http://www.w3.org/TR/2013/REC-prov-constraints-20130430/
http://www.w3.org/TR/2013/REC-prov-constraints-20130430/
http://www.w3.org/TR/2013/NOTE-prov-dc-20130430/
http://www.w3.org/TR/2013/NOTE-prov-dc-20130430/
http://www.w3.org/TR/2013/NOTE-prov-dictionary-20130430/
http://www.w3.org/TR/2013/NOTE-prov-dictionary-20130430/
http://www.w3.org/TR/2013/REC-prov-dm-20130430/
http://www.w3.org/TR/2013/REC-prov-dm-20130430/
http://www.w3.org/TR/2013/NOTE-prov-links-20130430/
http://www.w3.org/TR/2013/NOTE-prov-links-20130430/
http://www.w3.org/TR/2013/REC-prov-n-20130430/
http://www.w3.org/TR/2013/REC-prov-n-20130430/
http://www.w3.org/TR/2013/REC-prov-o-20130430/
http://www.w3.org/TR/2013/REC-prov-o-20130430/
http://www.w3.org/TR/2013/NOTE-prov-overview-20130430/
http://www.w3.org/TR/2013/NOTE-prov-overview-20130430/
http://www.w3.org/TR/2013/NOTE-prov-primer-20130430/
http://www.w3.org/TR/2013/NOTE-prov-primer-20130430/
http://www.w3.org/TR/2013/NOTE-prov-xml-20130430/
http://www.w3.org/TR/2013/NOTE-prov-xml-20130430/

